1		資料 2 – 2
2		
3		
4	宮城県第五次地震被害想足	官調査
5		
6	中間報告書	
7		
8		
9		
10		
11		
12		
13		
14	令和 年 月	
15		
16	宮城県防災会議地震対策等項	∮門部会
17		
18		

1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			

1 目次

2			
3	1. はし	ンめに	1
4	2. 調盃	≦概要	2
5	2.1.	本調査の概要,活用方法	2
6	2.2.	調査体制	2
7	2.3.	本調査実施のポイント	4
8	2.4.	国(内閣府)の調査との比較	5
9	3. 東日	日本大震災前後の地震・津波環境	<i>.</i>
10	3.1.	県土の概要と東日本大震災以前の地震・津波防災対策	<i>.</i>
11	3.1.1.	地形・地質	<i>.</i>
12	3.1.2.	活断層	<i>.</i>
13	3.1.3.	東日本大震災以前の地震被害	8
14	3.1.4.	東日本大震災以前の津波被害	8
15	3.1.5.	東日本大震災以前の防災対策	8
16	3.2.	東日本大震災の概況	12
17	3.3.	東日本大震災以後の地震・津波防災対策	25
18	4. 宮坎	成県に大きな被害をもたらす地震	28
19	4.1.	目的	28
20	4.2.	地震本部による長期評価	28
21	4.3.	国による検討	30
22	4.4.	宮城県に大きな被害をもたらす地震	
23	5. 被領	 「想定の対象とする地震の選定	
24	5.1.	基本的な考え方	
25	5.2.	最大クラスの地震	
26	5.3.	その他の地震	
27		鬘動・液状化の予測	
28	6.1.	地震動の予測	
29	6.1.1.	-	
30	6.1.2.		
31	6.1.3.		
32	6.1.4.		
33	6.1.5.		
34	6.1.		
35	6.1	7 その他	58

1	6.2.	液状化計算	59
2	6.2.1.	液状化予測手法	59
3	6.2.	.2. 計算結果	63
4	7. 津沙	皮の予測	67
5	7.1.	概要	67
6	7.2.	波源断層パラメータの設定	67
7	7.3.	計算結果(最大クラスの津波浸水想定との比較)	70
8	8. 中間	間報告における留意点	73
9			
10			

1. はじめに

1 2

3 2011年(平成23年)3月11日に発生した2011年(平成23年)東北地方太平洋沖地震 4 (以下「東北地方太平洋沖地震」という。)と地震に伴い発生した大津波(以下「東日本大 5 震災」という。)は、人知を超えた猛威をふるい、県内で死者(直接死・関連死)1万人を超 6 える多くの人命を奪い、県土及び県民の財産に甚大な被害を与えた、未曽有の大災害であっ 7 た。

8

9 本県ではこれまで、1978年(昭和53年)の宮城県沖地震を契機として着手した地震被害 10 想定調査(以下「第一次調査」という。)にはじまり、1995年(平成7年)の阪神・淡路大 11 震災により内陸直下型地震への対策の必要性が明らかになったことを受けて実施した地震 被害想定調査(以下「第二次調査」という。), 2000 年(平成 12 年)に政府の地震調査研究 12 推進本部(以下「地震本部」という。)により、宮城県沖地震の発生確率が極めて高いと評 13 価されたことに伴う地震被害想定調査(以下「第三次調査」という。)を実施し、県地域防 14 災計画の修正, みやぎ震災対策アクションプラン等の県施策への活用, また市町村へのフィ 15 ードバックによる市町村地域防災計画等に活用が図られた。 16

17

18 その後,2008年(平成20年)12月に国の中央防災会議において日本海溝・千島海溝周辺 19 海溝型地震の地震防災戦略が公表され,これに対応した減災目標を策定する必要が生じた 20 ことから2010年度(平成22年度)に新たな地震被害想定調査(以下「第四次調査」とい 21 う。)に着手した。しかし、中間報告とりまとめについておおむね了解を得たところで東日 22 本大震災が発生し、被害想定対象の社会条件が大きく変化したことから中間報告書をもっ 23 て同調査を終了することとした。

2425

26

2728

このたび、被災市町村において復興に向けたまちづくりがある程度進展したと判断されたことから2021年度(令和3年度)から2023年度(令和5年度)の3か年にかけて第五次地震被害想定調査(以下「本調査」という。)を実施することとし、今回はその中間報告書(以下「本報告書」という。)を取りまとめたものである。

2930

31

32

3334

本報告書には主に、本県に大きな被害をもたらす地震の整理とその結果を踏まえた被害 想定対象地震の選定、さらに選定した地震の地震動・津波の予測計算結果を収めている。本 報告書はこの冊子(本編)に加え、概要版と添付資料から構成されており、利用者の分かり やすさ、使いやすさに配慮した。地震・津波防災に御尽力されている関係各位において本報 告書を広く御活用いただき、災害に強い社会の構築に向けた一助としていただければ幸い である。

1	2. 調査概要
2	2.1. 本調査の概要,活用方法
3	本調査は、中央防災会議の防災基本計画や本県の震災対策推進条例、地域防災計画等に基
4	づき, 県内に大規模な被害をもたらす地震を想定した以下の調査を実施するものである。な
5	お,250m四方の区画(メッシュ)を単位としたマクロ的な(巨視的)な調査であり、個別
6	の場所・施設の安全性を照査するものではない。
7	
8	● 調査期間 2021 年度(令和3年度)から2023年度(令和5年度)まで
9	● 調査区域 宮城県全域
10	● 実施項目
11	▶ 地震動・津波の計算
12	▶ 人的被害,物的被害等の想定 最終報告書
13	▶ 防災対策・減災目標の検討
14	
15	防災基本計画(中央防災会議)
16	地震災害対策編第1章 及び 津波災害対策編第1章
17	国及び地方公共団体は、被害の全体像の明確化及び広域的な防災対策の立案の基礎とするため、
18	具体的な被害を算定する被害想定を行うものとする。
19	= W Like W.W. & Follows - To a form of the second
20	震災対策推進条例(平成20年10月23日)
21	第十二条 県は、大学その他の研究機関等と連携し、震災の発生状況及び発生原因、震災による被
22	害の見込みその他震災に関する事項について科学的な調査を行うよう努めなければならない。
2324	
25	本調査の結果は、関係機関が行う事前防災対策における基礎資料として活用していただ
26	くほか、県民の防災意識向上の一助とする。また、本調査結果に基づき、県地域防災計画の
27	修正や震災後初となるみやぎ震災対策アクションプラン策定を行い、全県一体となった震
28	災対策の推進につなげるものである。
29	
30	2.2. 調査体制
31	本調査に係る調査方法・評価等に関する専門的事項の指導・助言を受けるため、宮城県防
32	災会議の下部組織として、学識経験者及びライフライン等関係機関の職員で構成する「地震
33	対策等専門部会」を設置した。主な検討事項及び構成員は以下のとおりである。委員名簿と
34	審議経過は次ページのとおり。

1		宮城県防災会議地	!震対策等車	厚門部会 委員名簿	
2					
3	専門委員(学識経験	(者)			
4				名誉教授(地震学)	
5	今村	文彦	東北大学	災害科学国際研究所	所長(津波工学)
6	運上	茂樹	東北大学	大学院工学研究科 教	授(構造工学)
7	風間	基樹	東北大学	大学院工学研究科 教	授(地盤工学)
8	遠田	晋次	東北大学	災害科学国際研究所	教授(地震地質学)
9	増田	聡	東北大学	大学院経済学研究科	教授(地域計画)
10	松澤	暢	東北大学	大学院理学研究科 教	授(地震学)
11	源栄	正人	東北大学	名誉教授(地震工学)	
12	専門委員(ライフラ	イン等関係機関)			
13	大友	辰雄 (~第2回)	h. h + 18		
14	加藤	辰雄 (~第2回) 弘道 (第3回~)	一仙台市刀 2	ス局供給部長	
15	菊池	勝元	東北電力	ネットワーク (株) 宮	城支社副支社長
16	佐藤	勇悦	東日本電信	言電話 (株) 宮城事業	部災害対策室長
17	藤井	玄 (~第2回)]			
18	蓬田	祐史 (第3回~)	東日本旅	客鉄道(株)東北本部	総務部安全企画室長
19	小野寺	辯穂 (∼第2回) ☐	台州旧 理	客鉄道(株)東北本部 寛生活部食と暮らしの	た 会 批 准 細 目
20	吉岡	幸信 (第3回~)	- 呂	児生伯部良と春りしの	女生推進硃女
21	中嶋	吉則	宮城県土	木部都市計画課長	
22	田代	浩次 (~第2回)	⇔ (∧ (1) ∧ 2	**	
23	大沼	伸 (第3回~)	宮城県企	業局水道経営課長	
24	専門委員(国の機関	∄)			
25	岡本	顕 (~第2回)	<i>bb</i> → <i>bb</i> `		÷n ⊨
26	高江洲		第一官区》	海上保安本部海洋情報·	部 長
27	髙濱	聡	仙台管区	気象台気象防災部地震	情報官
28	平山	孝信	東北地方	整備局防災対策技術分	析官
29	防災会議委員				
30	佐藤	達哉	宮城県復興	興・危機管理部長	
31		表	· 1 審議組	圣過	
	開催	崔日・回数		主な検討事項	備考
	第1回 2021年(令	和 3 年) 7月 28	日 (水)	調査方針	検討開始

	開催日・回数	汝	主な検討事項	備考
第1回	2021年(令和3年)	7月28日(水)	調査方針	検討開始
第2回	2022年(令和4年)	2月4日(金)	対象地震選定	
第3回	2022年(令和4年)	8月25日(木)	地震動・津波計算	
第4回	2022年(令和4年)	12月22日 (木)	中間報告書	中間報告

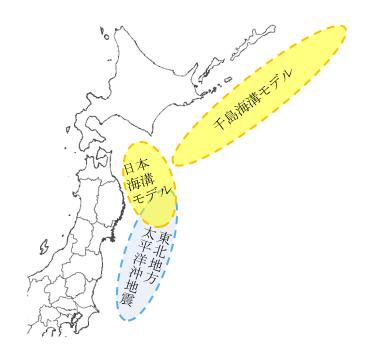
2.3. 本調査実施のポイント

これまで本県では、1978年(昭和53年)宮城県沖地震や1995年(平成7年)阪神・淡路大震災(兵庫県南部地震)などを契機に、4回の地震被害想定調査を実施し、防災対策に活用してきたものの、想定地震は宮城県沖地震(連動型)など最大でも M (マグニチュード、地震の規模を示す指標) 8 クラスのものであった。

表 2 これまで本県が実施した地震被害想定調査と対象地震

	契機	対象地震
第一次調査 1984(S59)~1986(S61) ※1979(S54)~1983(S58)で 地震地盤図を作成	1978年(昭和53年)の宮城県沖地震で甚大な被害が発生したため。	宮城県北部想定地震 宮城県沖地震(単独型) 福島県沖地震
第二次調査 1995(H7)~1996(H8)	1995年(平成7年)の阪神淡路 大震災により、内陸直下型地震 への対策の必要性が明らかになったため。	宮城県沖地震(単独型) 長町 - 利府線断層帯地震
第三次調査 2002(H14)~2003(H15)	2000年(平成12年)に地震本部 が公表した評価で、宮城県沖地 震の発生確率が極めて高い(今 後30年以内の発生確率99%)と されたため。	宮城県沖地震(単独型) 宮城県沖地震(連動型) 昭和三陸地震(津波のみ) 長町 - 利府線断層帯地震
第四次調査 2010(H22)~2011(H23) ※東日本大震災で中断	2008年(平成20年)に中央防災会議が公表した「地震防災戦略」により、人的・物的被害に関する減災目標を設定する必要が生じたため。	宮城県沖地震(単独型) 宮城県沖地震(連動型) 明治三陸地震(津波のみ) 長町 - 利府線断層帯地震
本調査 2021(R3)~2023(R5) (予定)	東日本大震災で甚大な被害が発生したため。 東日本大震災からの復旧・復興 後の状況を反映した被害想定を 行う必要があるため。	東北地方太平洋沖地震 宮城県沖地震(連動型) スラブ内地震 長町 - 利府線断層帯地震

東日本大震災はこの想定を超える M9.0 という最大クラスの地震であった。そのため、本調査ではこのような最大クラスの地震を対象に加える。また、今後発生する地震は過去の地震の繰り返しではないので、歴史地震のみに頼らず、科学的に想定されている地震を検討に含めて対象地震を選定する。


- 1 さらに中間報告で終了となった第四次調査を除くと、前回の第三次調査から約20年の期
- 2 間が経過していることや、その間の東日本大震災の復旧・復興により、地震・津波防災をと
- 3 りまく県土の様相が大きく変わっているため、それらを適切に考慮・反映した調査とする。
- 4 また、被害想定の精度を高めるため、計算手法や用いるデータには可能な限り最新の知見を
- 5 盛り込むこととする。

6 7

2.4. 国(内閣府)の調査との比較

- 8 被害想定調査は国(内閣府)でも実施しており、2021年(令和3年)12月に日本海溝・
- 9 千島海溝沿いで想定される2つの最大クラスの津波(日本海溝モデル(Mw(モーメントマ
- 10 グニチュード) 9.1), 千島海溝モデル (Mw9.3)) を対象とした被害想定を公表している。こ
- 11 の被害想定調査は、主に国全体の視点で防災対策立案を行うために実施されたものである。
- 12 これに対して本調査は、このような国(内閣府)の動きも踏まえ、本県にとって最も大き
- 13 な津波被害をもたらす東北地方太平洋沖地震を追加して実施している。なお、本県はこの3
- 14 つの地震を含めた最大クラスの津波浸水想定区域図を 2022 年(令和 4 年) 5 月に公表して
- 15 おり、本調査ではこれを活用した被害想定を行う。
- 16 それ以外により頻度が高い地震に対しても適切な防災対策を講じることが可能になるよ
- 17 う、本県の実情に応じた3つの地震を選定(5.参照)し、計4つの地震を対象とした被害想
- 18 定を実施する。

19

20

2122

図 1 最大クラスの津波の波源位置

1 3. 東日本大震災前後の地震・津波環境

2 3.1. 県土の概要と東日本大震災以前の地震・津波防災対策

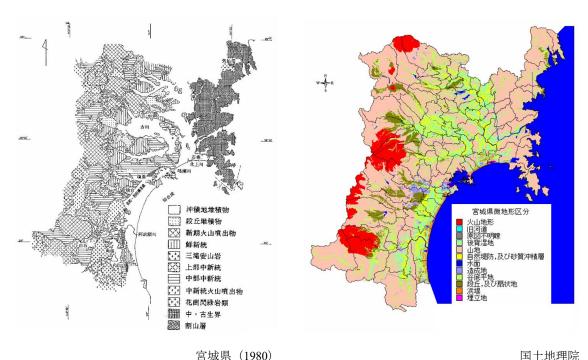
3.1.1. 地形・地質

4 宮城県は三陸沿岸の南端に位置し、牡鹿半島を境に北は典型的なリアス海岸が、南は浅い

5 海底が続いている。地形・地質は、大きく以下の4つの地域に分けることができる。

①北上高地 ②阿武隈高地 ③奥羽山脈とその東側の丘陵 ④中央低地

平野と丘陵部は人口密集地であり、しかも沖積層は一般に著しく軟弱であるためその分


布、厚さ及び岩相は重要である。

8

6

7

3

10 11

12

13 14

15

3.1.2. 活断層

16 利府町から仙台市を経て村田町にかけて概ね北東 - 南西方向に延びている長町 - 利府線 17 断層帯は、過去 4~5 万年間に少なくとも 3 回活動したと推定され、地震本部の長期評価に 18 よれば、今後 30 年の間に地震が発生する可能性が我が国の主な活断層の中ではやや高いグ 19 ループに属する。

図 2 宮城県の地質分布及び地形分布

表 3 宮城県内の活断層一覧

1

確実度

2

断層 番号	断層名	確実度	活動度	長さ(km)
1)	長町-利府線	I	В	12
2	大年寺山断層	I	В	8
3	鹿落坂断層	I	С	3
4	坪沼断層	I	В	5
5	円田断層	П	В	10
6	愛子断層	I	В	2
7	作並-屋敷平断層	I	С	9
8	遠刈田-三住	П	С	7
9	白石断層	I	В	2.5
10	上品山西	Ш		4
11)	加護坊山一篦岳山	Ш		12
12	旭山撓曲	П	$B \sim C$	8
13)	鹿折川	Ш		15
14)	栗駒山山頂断層	I	В	1,2
15)	揚石山南	П	В	3
16	鬼首断層	I	В	6
17)	双葉断層 [小斉峠付近]	П	В	5
(18)	越河断層	I	В	15

I:活断層であることが確実なもの 活動度 A:第四紀の平均変位速度 1~ 10m/1000年 II:活断層であると推定されるもの B:第四紀の平均変位速度 0.1~ 1m/1000年 III:活断層の可能性があるもの C:第四紀の平均変位速度 0.01~0.1m/1000年

活断層研究会編(1991)

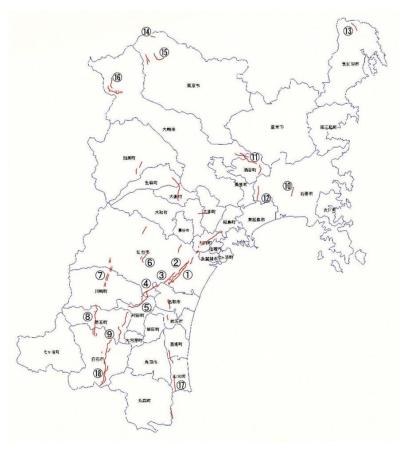


図 3 宮城県内の 活断層の分布

1 3.1.3. 東日本大震災以前の地震被害

- 2 太平洋沖合では、1896 年 (明治 29 年) の明治三陸地震 (M8.2) や 1933 年 (昭和 8 年)
- 3 の昭和三陸地震 (M8.1) のように M8 クラスの巨大地震が発生することがある。1978 年 (昭
- 4 和 53 年)の宮城県沖地震 (M7.4)の際には、丘陵を造成した宅地に大きな被害が生じ、さ
- 5 らに、ガス、水道、電気などのライフラインの被害による市民生活に混乱が生じるなど、都
- 6 市型の災害が生じた。地震が発生した海域付近では、およそ40年間隔で同程度の規模の地
- 7 震が発生している。
- 8 陸域の地震としては、2003年(平成15年)に発生した宮城北部地震(M6.4)、2008年(平
- 9 成 20 年) に発生した岩手・宮城内陸地震(M7.2)で甚大な被害が生じている。

10

11 3.1.4. 東日本大震災以前の津波被害

- 12 1896年(明治29年)の明治三陸地震津波,1933年(昭和8年)の昭和三陸地震津波や
- 13 1960年 (昭和35年) のチリ地震津波など幾度もの津波による災害を経験し、特にリアス
- 14 海岸の気仙沼市,女川町,志津川町(現南三陸町)での被害が大きかった。

1516

3.1.5. 東日本大震災以前の防災対策

- 17 本県では、これら過去数百年間程度の災害実績を基本に地震・津波防災対策を推進してお
- 18 り、その基礎資料として地震被害想定調査を4回実施してきた。特に、当時30年以内の発
- 19 生確率が99%と再来確率が極めて高いとされていた宮城県沖地震(連動型の場合 M8.0)を
- 20 念頭に置いた被害想定と防災対策を進めていた。
- 21 しかし、2011年(平成23年)3月11日の東日本大震災は、その想定を超える地震動・津
- 22 波であり家屋, ライフライン, インフラ等が甚大な被害を受け, 当時進めていた第四次調査
- 23 を継続することができなくなったことから, 2012年(平成24年)3月の中間報告書をもっ
- 24 て終了することとした。

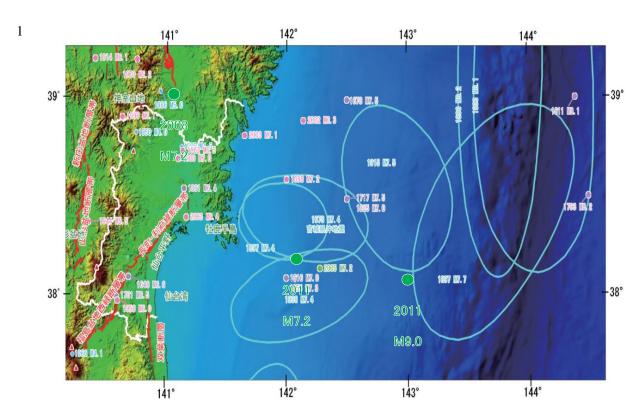
表 4 宮城県に被害を及ぼした主な地震(東日本大震災前)

西暦(和暦)	地域(名称)	M	主な被害	被害の出典
869.7.13 (貞観11)	三陸沿岸	8.3	(家屋倒壊, 圧死者多く, 津波による 多賀城下で溺死者1,000。)	宮城県
1611.12.2 (慶長16)	三陸沿岸及び北海 道東岸	8.1	(津波があり,伊達領で溺死者1,783, 南部,津軽で人馬の死3,000以上。)	新編日本被害地 震総覧
1646.6.9 (正保3)	陸前・岩代・下野	6.5 ~ 6.7	仙台城・白石城で被害。	理科年表
1793.2.17 (寛政5)	陸前・陸中・磐城	8∼ 8.4	仙台藩で死者12, 家屋破損1,060以 上。	新編日本被害地 震総覧
1835.7.20 (天保6)	仙台	7	仙台城石垣破損。	新編日本被害地 震総覧
1896.6.15 (明治29)	(明治三陸地震)	8.2	津波による被害。死者3,452, 負傷者 1,241, 家屋倒壊854, 同流出3,121。	新編日本被害地 震総覧
1900.5.12 (明治33)	宮城県北部	7.0	遠田郡で被害最大。死者13, 負傷者 4, 家屋全壊44。	新編日本被害地 震総覧
1933.3.3 (昭和8)	(三陸地震)	8.1	津波による被害。死者・行方不明 308, 負傷者145, 家屋倒壊528, 同 流出950。	新編日本被害地 震総覧
1960.5.23 (昭和35)	(チリ地震津波)	9.5	津波による被害。死者・行方不明54, 負傷者641, 建物全壊977, 建物流失 434。	新編日本被害地 震総覧
1962.4.30 (昭和37)	(宮城県北部地震)	6.5	田尻町,南方村を中心に被害。死者 3,負傷者272,住家全壊340。	新編日本被害地 震総覧
1978.6.12 (昭和53)	(1978年宮城県沖地 震)	7.4	死者27, 負傷者1,273, 住家全壊 1,180。	新編日本被害地 震総覧
2003.5.26 (平成15)	宮城県沖	7.1	重軽傷者64, 住家半壊11, 一部破損 1,033。	宮城県 (H15.6.19最終報)
2003.7.26 (平成15)	宮城県北部	6.4	重軽傷者675,住家全壊1,276,半壊3,809,一部破損10,975。	宮城県 (H16.3.12確定報)
2005.8.16 (平成17)	宮城県沖	7.2	負傷者79。	宮城県 (H17.7.27確定報)
2008.6.14 (平成20)	平成20年(2008年) 岩手・宮城内陸地震	7.2	死亡者14, 負傷者365, 住家全壊28, 半壊141, 一部破損1,733。	宮城県 (H23.4.29現在)

地震調査研究推進本部地震調査委員会編(2009)に加筆

1 2

表 5 宮城県における主な津波災害(明治以降~東日本大震災前)


3

区分 名称 (災害種別)	死者 (人)	行方 不明 者 (人)	重傷 (人)	軽症者 (人)	全壊 (棟)	半壊 (棟)	流出 (棟)	床下 浸水 (棟)	船舶流出	その 他 被害	被害総額 (千円)	発生期日	震源	マク゛ニチュート゛	最大 波高 (m)
明治三陸地震 (大津波)	3,452		1	,241			985					1896年 明治29年6月15日	三陸沖	8.2	
三陸地震 (津波)	30	08		145	52	28		1,520	948			1933年 昭和8年3月3日	三陸沖	8.1	只越 7
十勝沖地震 (津波)										有		1952年 昭和27年3月4日	十勝沖	8.2	雄勝 1.9
(地震・津波)											軽微	1958年 昭和33年11月7日	択捉島 南東沖	8.1	
チリ地震津波 (大津波)	41	12	(625	1,206	899	307	6,097	779	有	11,618,000	1960年 注1) 昭和35年5月24日	チリ沖	9.5	牡鹿 5.4
(津波)										有	89,657	1963年 昭和38年10月13日	択捉島 南東沖	8.1	
(津波)										有	97,237	1964年 昭和39年3月28日	アラス カ 南部	9.2	
1968年 十勝沖地震 (地震・津波)	1		1					54		有	1,932,053	1968年 昭和43年5月16日	青森県 東方沖	7.9	
平成6年(1994年) 北海道東方沖 地震(津波)										有	535,036	1994年 平成6年10月4~5日	北海道 東方沖	8.2	鮎川 0.42
平成15年(2003年) 十勝沖 地震(津波)								8		有	95,426	2003年 平成15年9月26日	十勝沖	8.0	鮎川 0.32
(津波)				OTT T- 2 5							4,321,139	2010年 注2) 平成22年2月28日	チリ沖	8.8	鮎川 0.78

注1) 地震発生日は1960年(昭和35年)5月23日 注2) 地震発生日は2010年(平成22年)2月27日

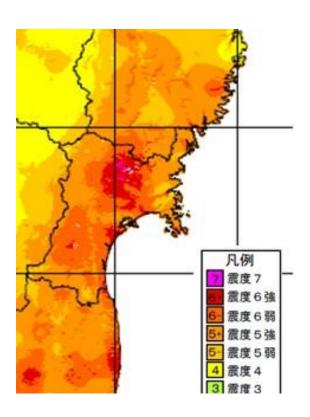
6 7

4 5

参考文献

地震調査研究推進本部地震調査委員会編(2009): 日本の地震活動 一被害地震から見た地域別の特徴ー <第 2 版 >

3.2. 東日本大震災の概況


1 地震の発生状況

2011年(平成23年)3月11日14時46分18.1秒,三陸沖(北緯38°06.2′東経142°51.6′震 源の深さ 24km)で M9.0 の地震が発生し、宮城県栗原市で震度 7、宮城県、福島県、茨城県、

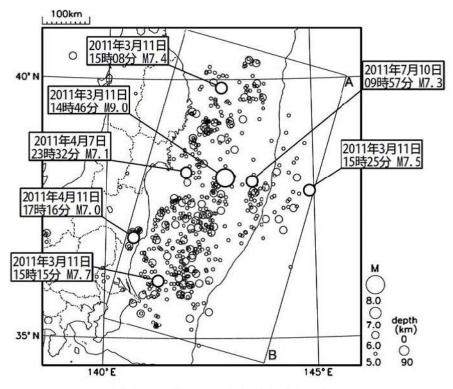
- 栃木県の4県37市町村で震度6強を観測したほか、東日本を中心に北海道から九州地方に
- かけての広い範囲で震度 6 弱から 1 を観測した。県内で震度 6 弱以上を観測した地域は次

のとおりであった。

震度	市区町村				
7	栗原市				
7. 社	仙台市宮城野区, 石巻市, 塩竈市, 名取市, 登米市, 東松島市, 大崎市, 蔵王				
6強	町、川崎町、山元町、大衡村、涌谷町及び美里町				
6弱	仙台市青葉区, 仙台市若林区, 仙台市泉区, 気仙沼市, 白石市, 角田市, 岩沼				
0 33	市,大河原町,亘理町,松島町,利府町,大和町,大郷町,富谷町及び南三陸町				

推計震度分布図

気象庁資料

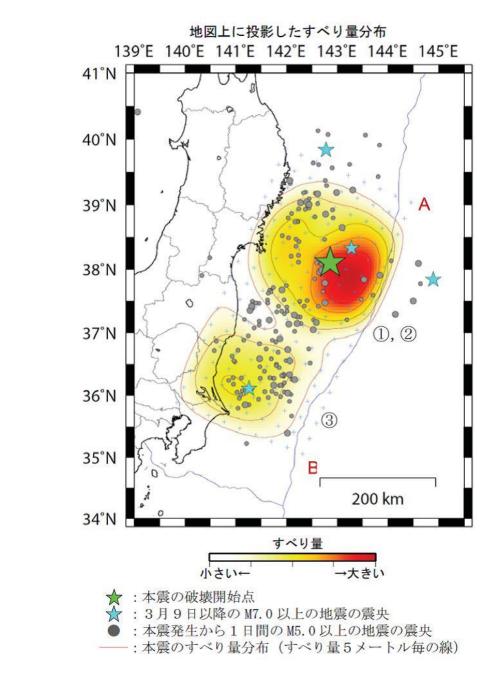

2 地震の特徴

(1) 震源域

震源域が東北地方から関東地方にかけての太平洋沖の幅約 200km, 長さ約 500km と広範囲にわたり、日本列島のほぼ全域で揺れを観測するほどの海溝型の巨大地震であった。

震央分布図

(2011年3月11日12時00分~8月4日08時00分、深さ90km以浅、M≥5.0)

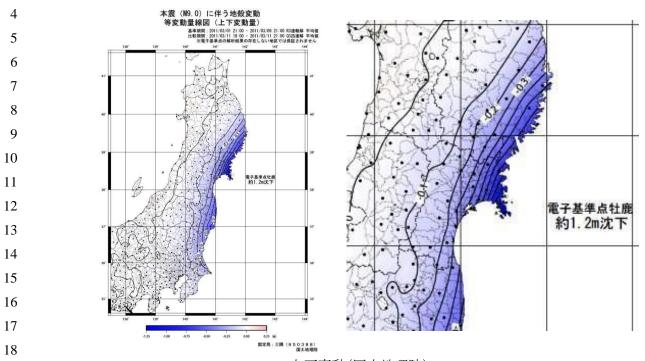

丸の大きさはマグニチュードの大きさを表す。 M7.0 以上の地震に吹き出しをつけている。

気象庁資料

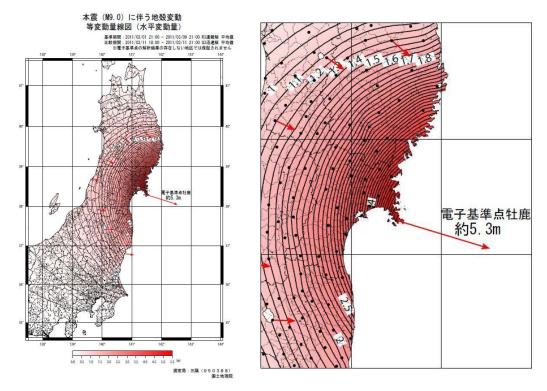
1 (2) プレート境界でのすべり

本震の発震機構は,西北西-東南東方向圧力軸を持つ逆断層型で,太平洋プレートと陸の プレートとの境界で発生し,巨大津波を発生させた。

断層すべりの大きさは、宮城県沖で最大 25m 以上に達すると推定されている。



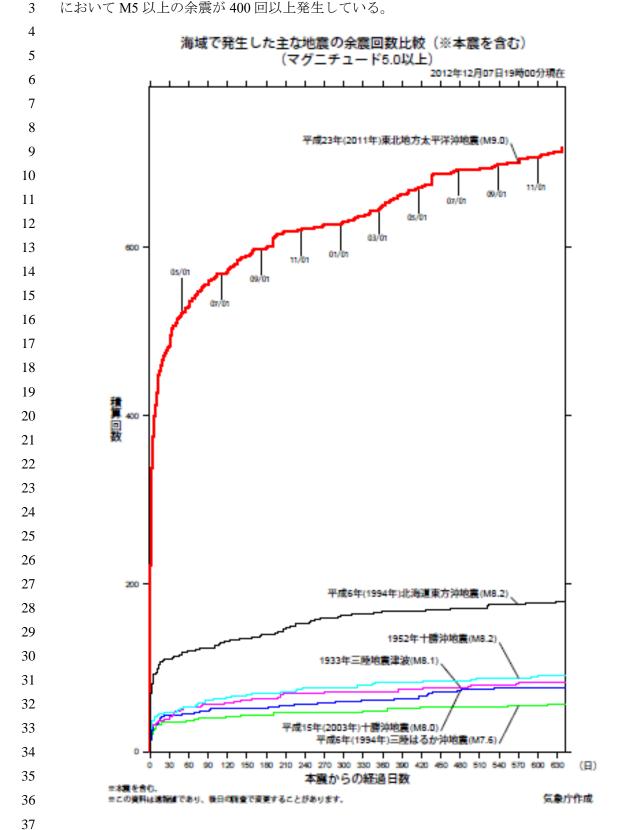
プレート境界でのすべり量


 気象庁資料

(3) 地殼変動

東北地方太平洋沖地震により、石巻市牡鹿では上下変動量で約 1.2m 程度沈下し、水平変動量で約 5.3m 程度東南東方向に移動した。

上下変動(国土地理院)


水平変動(国土地理院)

(4) 余震の発生

1

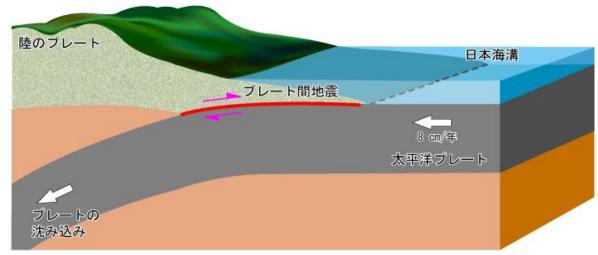
2

過去の大地震と比較して、余震の発生回数が非常に多く、地震から3週間後の4月1日においてM5以上の余震が400回以上発生している。

1	3	地震発生のメカニズム
---	---	------------

(1) 2011年(平成23年)3月11日14時46分本震

3 2011年(平成23年)3月11日以前においては、しっかりと固着していた太平洋プレート


- と陸側プレートの境界面(図中の赤線部)で、2011年(平成23年)3月11日14時46分に
- 5 大きなすべりが急激に発生した(東北地方太平洋沖地震 本震)。このプレート境界では20
- 6 ~30m 程度のすべりが発生したと考えられるが、日本海溝に近い領域では最大 80m 程度に
- 7 も達するすべりが発生したと考えられる。本震発生時にすべった領域は南北に約 500km, 東
- 8 西に約 200km 程度である。このような広範囲におけるプレート境界での膨大なすべりによ
- 9 り、M9.0 という超巨大地震が発生した。

10

2

4

1112

13 14

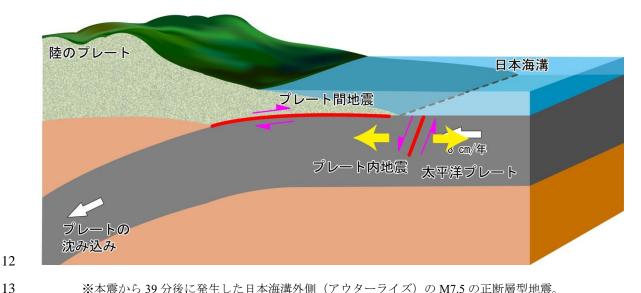
※ 2011年(平成23年)3月11日14時46分のM9.0の地震(本震)。※ ピンク色矢印は本震時のすべりの方向を表す。

15

16

17

2011年(平成23年)3月11日14時46分 本震の発生メカニズム


18 19

20

21

(2) 2011年(平成23年)3月11日本震から39分後の地震

本震によるプレート境界での膨大なすべりにより、太平洋プレート内部の応力場が急変 し、日本海溝軸外側(アウターライズ)では圧縮場から伸張場になったと考えられる。これ により本震から39分後に、太平洋プレート内部で正断層型地震が発生した。これまで、こ のような大きなマグニチュードの正断層型地震はごく稀にしか発生していなかった。1933 年(昭和8年)3月3日には、この地震の北側でM8.1の正断層型地震の昭和三陸地震が発 生し、大きな津波を引き起こしている。

※本震から39分後に発生した日本海溝外側(アウターライズ)のM7.5の正断層型地震。 ※赤線は断層面、ピンク色矢印はすべりの方向、黄色矢印は張力を表す。

2011年(平成23年)3月11日 本震から39分後の地震の発生メカニズム

地震学では(日本)海溝軸外側の地震を一般に「アウターライズ地震」と呼ぶ。

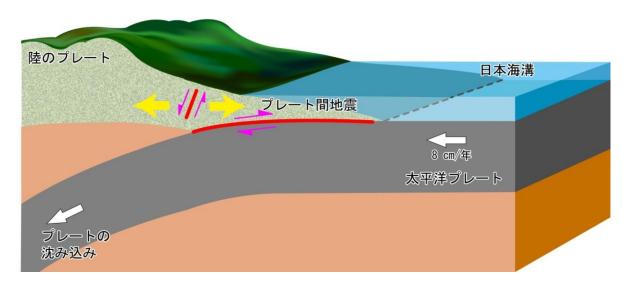
1 2 3 4 5 6 7 8 9	(3) 2011 年 (平成 23 年) 4月7日 宮城県沖のスラブ内地震 沈み込んだ太平洋プレートの深部でも、本震のすべりにより応力場に変化がみられた。本 震発生後には圧縮力がより一層増加したため、深さ約70km 付近で M7.1 の逆断層型のスラ ブ内地震が発生した。 スラブ内地震は震源から放出される地震波に、高周波成分を多く含むことが知られてお り、この地震により宮城県を中心として、かなりの地震動災害が発生した。
	陸のプレート
	日本海溝
	プレート間地震
	8 cm/年
	プレート内地震 太平洋プレート
	プレートの
1.1	沈み込み
11 12	※ 2011 年 (平成 23 年) 4 月 7 日 宮城県沖のスラブ内地震 (M7.1)。
13	※ 赤線は断層面,ピンク色矢印はすべりの方向,黄色矢印は圧縮力を表す。
	※ が極端の間面、 ことり 巨人中間より、りいカ門、 東巨人中間は上幅力を取り。
14	2011 年 (亚라 22 年) 사무구무 호텔티바のフェブ中地電の発生メナーブノ
15	2011 年(平成 23 年)4 月 7 日 宮城県沖のスラブ内地震の発生メカニズム
16	
17	
18	
19	
20	
21	
22	

地震学では沈み込んだプレート内の地震を一般に「スラブ内地震」と呼ぶ。

2324

1		

2 (4) 2011年 (平成23年) 4月11日 福島県南部の内陸地震


3 本震の発生時に東北地方の陸地部分は大きく東南東にずれ動いたことが知られている。

- 4 特に、太平洋側の場所ほど大きくずれている。本震発生以前は、日本海溝から沈み込む太平
- 5 洋プレートと陸側プレートの境界面が固着していたため、陸側プレート内部では東西方向
- 6 の圧縮場となっていた。
- 7 そのため、例えば 2008 年 (平成 20 年) 6 月 14 日の岩手・宮城内陸地震 (M7.2) のよう
- 8 な逆断層型の内陸地震が多数発生していたが、本震時の内陸での東南東への地殻変動によ
- 9 り、陸側プレート内部では伸張場となり、正断層型の内陸地震が発生したと考えられる。こ
- 10 れまで、東北地方ではこのように大きな正断層型の内陸地震はほとんど発生してはいなか
- 11 った。

12

13

14

15 16

※ 4月11日 福島県南部のM7.0の内陸地震。

17 18 ※ 赤線は断層面、ピンク色矢印はすべりの方向、黄色矢印は張力を表す。

19 20 2011年 (平成 23年) 4月11日 福島県南部の内陸地震の発生メカニズム

1 4 津波観測状況

- 2 各地の津波観測施設では、福島県相馬で 9.3m 以上、宮城県石巻市鮎川で 8.6m 以上など、
- 3 東日本の太平洋沿岸を中心に非常に高い津波を観測したほか、北海道から鹿児島県にかけ
- 4 ての太平洋沿岸や小笠原諸島で 1m 以上の津波を観測した。また、津波観測施設及びその周
- 5 辺地域において現地調査を実施し、津波の痕跡の位置等をもとに津波の高さの推定を行っ
- 6 た結果, 地点によっては 10mを越える津波の痕跡が確認されている。
- 7 この津波により,東日本の太平洋沿岸各地で甚大な被害が発生した(気象庁技術報告第133
- 8 号 調査報告 気象庁による。)。
- 9 宮城県内の浸水面積は 327 平方キロメートル(国土交通省国土地理院: 概略値)に達した。

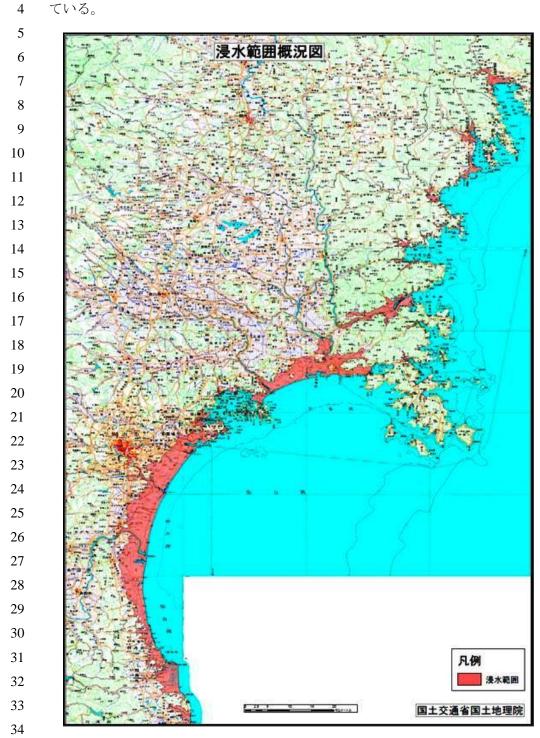
10

1112

- 13 ※ 矢印は、津波観測施設が津波により被害を受けたためデータを入手できない期間があり、後 14 続の波でさらに高くなった可能性があることを示す。
- 15 ※ 当グラフは、気象庁が内閣府、国土交通省港湾局・海上保安庁・国土地理院、愛知県、四日 16 市港管理組合、兵庫県、宮崎県、日本コークス工業(株)の検潮データを加えて作成したもの。

17 18

東日本大震災における津波観測状況


5 津波による浸水状況

1

3

35

東北地方太平洋沖地震により、本県の沿岸 15 市町は甚大な浸水被害を受けた。また、最大浸水高は、南三陸町(志津川)の T.P.+19.6m、最大遡上高は、女川町の T.P.+34.7m となっている。

津波の浸水範囲

36 国土地理院資料

1 津波浸水面積及び痕跡高一覧表

	ト田恒及り返跡	7027		△/// 士町++		
	ID	70		合併市町村面	最大浸水高	最大遡上高
№	旧市町村	現市町村	面積(ha)	積	(T.P.m)	(T.P.m)
				(ha)		
1	唐桑町	気仙沼市	129ha	1,833ha	15.2m	21.1m
2	気仙沼市		1,087ha		16.6m	17.3m
3	本吉町		617ha		19.3m	22.3m
4	歌津町	南三陸町	310ha	978ha	18.1m	26.1m
5	志津川町		668ha		19.6m	20.2m
6	北上町	石巻市	974ha	7,700ha	14.4m	17.8m
7	雄勝町		152ha		16.2m	21.0m
8	河北町		1,942ha		5.0m	8.8m
9	河南町		446ha		2.6m	- m
10	石巻市		3,960ha		11.5m	12.0m
11	牡鹿町		227ha		17.5m	26.0m
12	女川町	女川町	293ha		18.5m	34.7m
13	矢本町	東松島市	2,222ha	3,771ha	7.6m	- m
14	鳴瀬町		1,549ha		10.1m	- m
15	松島町	松島町	157ha		2.8m	- m
16	利府町	利府町	14ha		6.3m	- m
17	塩竈市	塩竈市	433ha		4.8m	- m
18	七ヶ浜町	七ヶ浜町	520ha		11.6m	- m
19	多賀城市	多賀城市	623ha		5.5m	- m
20	仙台市宮城野	仙台市宮城野	2,092ha		13.9m	- m
	区	区				
21	仙台市若林区	仙台市若林区	2,775ha		11.9m	- m
22	仙台市太白区	仙台市太白区	110ha		2.1m	- m
23	名取市	名取市	2,740ha		11.8m	- m
24	岩沼市	岩沼市	2,828ha		10.5m	- m
25	亘理町	亘理町	3,493ha		8.1m	- m
26	山元町	山元町	2,441ha		14.6m	10.4m
	総計		32,801ha			

^{2 ※} 面積は、合併前の旧市町と合併後に区分した。

^{3 ※} 痕跡高は、最大浸水高と最大遡上高に区分した。平野部については内陸部ほど津波高

⁴ が低くなり浸水高が最も高くなることから、遡上高については記載していない。

6 津波の到達時間

(参考)津波の到達時間

対象箇所	津波の高さ	到達時刻	出典
石巻市鮎川	8.6m以上	15:26	気象庁資料

3.3. 東日本大震災以後の地震・津波防災対策 1

- 中央防災会議は、東日本大震災を踏まえて津波のレベルを2つに区分し、発生頻度の高 2
- い津波(レベル1津波)は防潮堤等のハード整備により「防護」し、今次津波のような最 3
- 大クラスの津波(レベル2津波)に対してはハードのみならずソフト対策も組み合わせた 4
- 5 「減災」により住民等の生命を守るという考え方を示した。本県では、沿岸部にレベル1
- 津波に対応した防潮堤の整備行い、さらに高台移転・職住分離、多重防御などの災害に強 6
- 7 いまちづくりの構築を進めている。

8

9 10

11

東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会

東日本大震災を踏まえて今後の地震・津波対策についての検討を重ね、平成23年9月28日に報告をとりまとめた。 (平成23年5月28日から4ヶ月間、全12回審議)

専門調査会報告の要点

今回の地震・津波被害の特徴と今後の想定津波の考え方

今回の地震・津波被害の特徴と検証

- ○巨大な地震・津波による甚大な人的・物的被害が発生 ○想定できなかったM9.0の巨大な地震
- 〇実際と大きくかけ離れていた従前の想定 / 海岸保全施設等に過度に依存した防災対策/実現象を下回った 津波警報など
- ⇒反省と教訓をもとに防災対策全体を再構築

防災対策で対象とする地震・津波の考え方

- ○あらゆる可能性を考慮した最大クラスの巨大な地震・津波を検討
- 〇古文書等の分析、津波堆積物調査、海岸地形等の調査などの科学的知見に基づき想定地震・津波を設定
- 〇地震学、地質学、考古学、歴史学等の統合的研究を充実

津波対策を構築するにあたってのこれからの想定津波の考え方

今後、二つのレベルの津波を想定

- 〇発生頻度は極めて低いものの、甚大な被害をもたらす最大クラスの津波
- ・住民等の生命を守ることを最優先とし、住民の避難を軸に、とりうる手段を尽くした総合的な津波対策を確立
- 〇発生頻度は高く、津波高は低いものの大きな被害をもたらす津波
- ・人命保護に加え、住民財産の保護、地域の経済活動の安定化、効率的な生産拠点の確保の観点から、
- 海岸保全施設等を整備

図 4 東北地方太平洋沖地震を教訓とした地震・津波対策に関する専門調査会報告の要点 (中央防災会議)

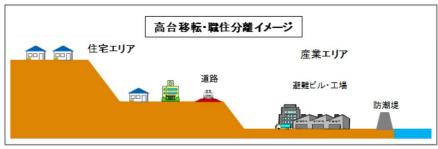


図 5 災害に強いまちづくり構築のイメージ

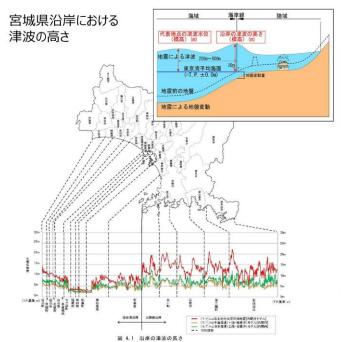
国(内閣府)では、日本海溝・千島海溝沿いにおいて M9 クラスの巨大地震の発生が想定され、その切迫性が高まっているとして 2021 年(令和3年)12月に被害想定を発表した。これによれば、日本海溝(三陸・日高沖)モデルによって全体で約19万9千人、本県では約8,500人の死者が想定されている。この想定を受け、2022年(令和4年)5月に日本海溝・千島海溝周辺海溝型地震に係る地震防災対策の推進に関する特別措置法(平成16年法律第27号)が改正された。

<被害が最大となるケースにおける推計値>

推計項目 (被害が最大となるケース)	日本海溝地震	千島海溝地震
死者数 (冬·深夜)	約 199,000人	約 100,000人
低体温症要対処者数 (冬·深夜)	約 42,000人	約 22,000人
全壊棟数 (冬·タ方)	約 220,000棟	約 84,000棟
経済的被害額 (冬·夕方)	約 31兆円	約 17兆円

図 6 日本海溝・千島海溝沿いの巨大地震による被害想定(内閣府資料)

本県では津波防災地域づくりに関する法律(平成23年法律第123号)に基づき,2022年(令和4年)5月に最大クラスの津波浸水想定を設定・公表した。また,これを受けて沿岸市町における津波避難計画の指針である「宮城県津波対策ガイドライン」を2022年(令和4年)8月に改定した。


5

1

2

3

4

市町村別に最大となる沿岸の津波の高さ

沿岸名	市町名	津波の 高さ (T. P. m)	最大となる地点
	気仙沼市	22. 2m	気仙沼市本吉町道外 付近
三陸南	南三陸町	21. 2m	南三陸町戸倉長須賀 付近
沿岸	石巻市	19.6m	石巻市雄勝町雄勝上雄勝 付近
	女川町	20. 7m	牡鹿郡女川町海岸通り 付近
	石 巻 市	11. 2m	石巻市桃浦向 付近
	東松島市	10. 6m	東松島市宮戸観音山 付近
[松島町	4. 7m	松島町松島大沢平 付近
[利府町	5. Om	宮城郡利府町赤沼櫃ケ沢 付近
[塩竈市	4. 8m	塩竈市新浜町 付近
仙台湾	七ヶ浜町	10. Om	宮城郡七ヶ浜町菖蒲田浜長砂 付近
沿岸	多賀城市	8. 6m	多賀城市栄 付近
[仙台市	10. 3m	仙台市若林区井土須賀 付近
	名取市	10. 7m	名取市下增田屋敷 付近
	岩沼市	11.3m	岩沼市早股前川 付近
	亘理町	11.5m	亘理郡亘理町吉田砂浜 付近
	山元町	14.9m	亘理郡山元町坂元浜 付近

宮城県沿岸で最大となるのは、 気仙沼市本吉22.2m

※沿岸の津波の高さ 海岸線から20m程度沖合における津波の最大水位

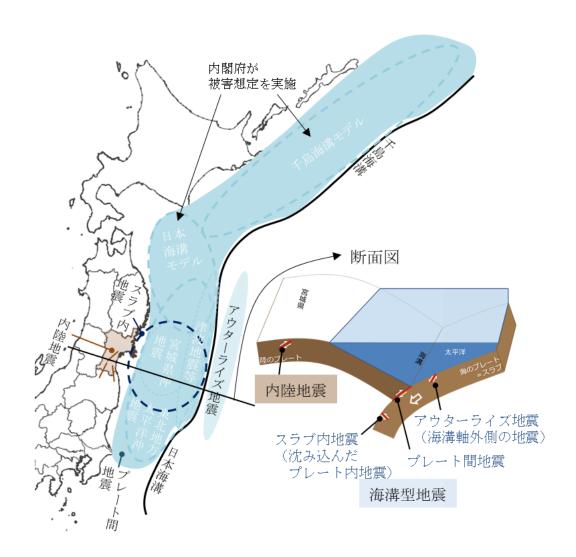
6 7

図 7 最大クラスの津波浸水想定の計算結果

4. 宮城県に大きな被害をもたらす地震

2 4.1. 目的

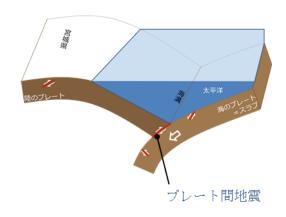
- 3 第四次調査は、当時再来確率が極めて高いと評価されていた宮城県沖地震を念頭に置い
- 4 たものであった。また、その他の対象地震も過去数百年間程度に発生したものの繰り返しを
- 5 想定していたが東日本大震災はこの想定に含まれないものであった。このことから、本調査
- 6 では対象地震を選定するまえに、今後どのような地震が発生しうるかを整理する。


7 8

1

4.2. 地震本部による長期評価

9 地震本部では、海溝型地震や主要な活断層で発生する地震(内陸地震)を対象に、地震の 10 規模や一定期間内に地震が発生する確率を予測(地震発生可能性の長期評価)している。な 11 お、この評価には、チリ地震津波などの遠地津波を含んでいない。


12

13 14

図 8 宮城県に大きな被害をもたらす地震の発生域

1 海溝型地震とは、2枚のプレート間のずれによって生じるプレート間地震と沈み込む側の 2 プレート内部が破壊することにより発生するプレート内地震を指している。プレート間地 震は海と陸の2つのプレートの境界面が破壊される(ずれる)ことによって発生する。過去 4 に発生したプレート間地震の例としては、2011年(平成23年)東北地方太平洋沖地震(東 5 日本大震災、M9.0)、1793年(寛政5年、M7.9)や1978年(昭和53年、M7.4)などの宮城 県沖地震、1896年(明治29年)明治三陸地震などがある。明治三陸地震は海溝寄りのプレ ート間地震であり大きな津波を伴うことがあるため「津波地震」とも呼ばれる。

8

図 9 プレート間地震の模式図

1011

12 13

14

15

16

17 18 後者のプレート内地震はさらに「沈み込んだプレート内の地震」と「海溝軸外側の地震」に分類され、地震学では一般に沈み込んだプレート内の地震を「スラブ内地震」と、海溝軸外側の地震を「アウターライズ地震」と呼ぶ(本報告書でも以降「スラブ内地震」「アウターライズ地震」と表記する)。過去に発生した例としてスラブ内地震では 2011 年(平成 23年)4月宮城県沖、2021年(令和3年)2月福島県沖、2022年(令和4年)3月福島県沖などがあり、東日本大震災後頻度が高まっている。アウターライズ地震の例としては、1933年(昭和8年)昭和三陸地震がある。プレート間地震の後にはアウターライズ地震が発生しやすくなるが、東日本大震災以降いまだそのような地震が発生しておらず注意が必要である。

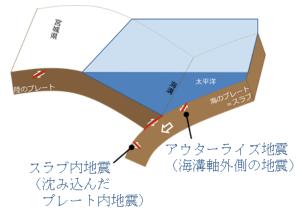


図 10 プレート内地震の模式図

内陸地震は活断層により発生する地震である。長期評価の対象となっている県内の断層は長町 - 利府線断層帯,福島盆地西縁断層帯,双葉断層の3つであり。本県では長町 - 利府線断層帯による地震を第二次調査から対象としている。ただし、2003年(平成15年)宮城県北部連続地震、2008年(平成20年)岩手・宮城内陸地震など、長期評価に含まれておらず、それまで知られていなかった断層による地震も発生していることに注意が必要である。

内陸地震

図 11 内陸地震の模式図

4.3. 国による検討

日本海溝・千島海溝沿いの巨大地震モデル検討会では、過去約6千年間における津波堆積物資料を基本に巨大地震を推定し、岩手県から北海道の日高支庁以西の海岸領域及び北海道の十勝支庁から根室支庁にかけての海岸領域でそれぞれ最大クラスの地震・津波の発生が切迫している状況にあると判断している。

図 12 千島海溝モデルと日本海溝モデル(内閣府資料)

1 4.4. 宮城県に大きな被害をもたらす地震

2 地震本部等の評価をもとに、本県に大きな被害をもたらしうる地震を整理したのが下表

3 である。

4 5

表 6 宮城県に大きな被害をもたらしうる地震

表 6 宮城県に大きな被害をもたらしっる地震					
海	溝西	型地震 The state of the state of			
	プ	レート間地震(海のプレートと陸のプレートとの間のずれによって生じる地震)			
		東北地方太平洋沖地震型 超巨大地震 M=9.0 程度 今後 30 年以内の地震発生確率:ほぼ 0%			
		日本海溝モデル Mw=9.1 切迫性が高まっている(内閣府)			
		千島海溝モデル Mw=9.3 切迫性が高まっている(内閣府) 今後30年以内の地震発生確率:7~40% (M8.8 程度以上)			
		宮城県沖地震 今後 30 年以内の地震発生確率: 20%程度 (M7.9 程度) 90%程度 (M7.0~7.5 程度) 70~80% (M7.4 前後, 陸寄り)			
		津波地震等 Mt8.6~9.0 今後30年以内の地震発生確率:30%程度 (津波マグニチュード)			
	スラブ内地震 M7.0~7.5 程度 今後 30 年以内の地震発生確率: 60~70% ※2011.4, 2021.2, 2022.3 など震災後頻発				
	アウターライズ地震 M8.2 前後 今後 30 年以内の地震発生確率: 7%				
内	内陸地震(地震本部が長期評価している3つの地震を記載)				
	長	町 - 利府線断層帯 M7.0~7.5 程度 今後 30 年以内の発生確率:1%以下			
	福	島盆地西縁断層帯 M7.8 程度 今後 30 年以内の発生確率:ほぼ 0%			
	双葉断層 M6.8~7.5 程度 今後 30 年以内の発生確率:ほぼ 0%				

- 6 ※この表に記載している確率は地震本部によるもので、令和4年1月1日現在。
- 7 東北地方太平洋沖地震による影響などによりこの数値よりも高い可能性がある。

- 最大クラスの地震は日本海溝モデル、千島海溝モデル、東北地方太平洋沖地震の3つが 1 あり、宮城県にとって最も大きい被害をもたらすものは震源が近い東北地方太平洋沖地震 2 であると想定される。一方、日本海溝モデル・千島海溝モデルは発生間隔・最後の津波発 3 生時期等を勘案すると切迫性が高いと考えられており、法律改正をはじめとした各種対策 4 5 が講じられている最中である。 6

8

- これら3つの地震は津波に関しては最大クラスであるが、震度については必ずしも最大 7 とは言えない。東日本大震災後発生頻度が高まっているスラブ内地震や内陸地震はマグニ
- チュードが 7 クラスであっても、震源が近いことから強い揺れを起こしうる。 9

5. 被害想定の対象とする地震の選定

2 5.1. 基本的な考え方

- 3 防災基本計画によれば、被害想定は被害の全体像の明確化及び広域的な防災対策の立案
- 4 の基礎のために具体的な被害を算定するもの(①)とされている。また、対象となる地震・
- 5 津波については科学的知見を踏まえ、あらゆる可能性を考慮した最大クラスのもの(②)及
- 6 びその他様々なもの(③)を対象とすることとなっている。

7

1

- 8 このことから今回の被害想定の対象とする地震は、まず②の観点から、最大クラスの地震
- 9 として海溝型地震,内陸地震からそれぞれ一つずつ選定する。次に③のその他の地震につい
- 10 てであるが、①の観点から最大クラスよりも比較的規模が小さく、しかし頻度が高い地震に
- 11 対しても防災対策立案に資する調査となるよう M8 クラス, M7 クラスの地震をそれぞれ一
- 12 つずつ選定する。

13

14 5.2. 最大クラスの地震

- 15 海溝型地震としては、本県にとって最大の津波被害をもたらす東北地方太平洋沖地震を
- 16 選定する。なお、津波計算については2022年(令和4年)5月に公表した最大クラスの津
- 17 波浸水想定の検討結果を活用するが、強震動計算を行っていないため強震動計算は本調査
- 18 にて新規に実施する。
- 19 内陸地震としては、地震本部が長期評価を行っている3つの地震のうち、以下の観点か
- 20 ら長町 利府線断層帯地震を選定する。
- 21 ① 仙台都市圏に存在する断層であり、最も県内に大きな強震動被害が発生することが
- 22 想定される。また、県庁など災害対策の拠点となる地域も強震動を受ける。
- 23 ② 都市部・地方部と広域に多様な被害が発生することが想定され、県の今後の防災対策
- 24 立案に最も資すると考えられる。
- 25 ただし、県内には確認されているものだけでも多くの活断層が分布しており、内陸地震に
- 26 より被害を受ける可能性は県内全域にある。M6.5 程度の内陸地震はどこで発生しても不思
- 27 議ではないため、最終報告の際には当該断層のみならず県内全域の内陸地震防災対策に資
- 28 するものとなるようにする。

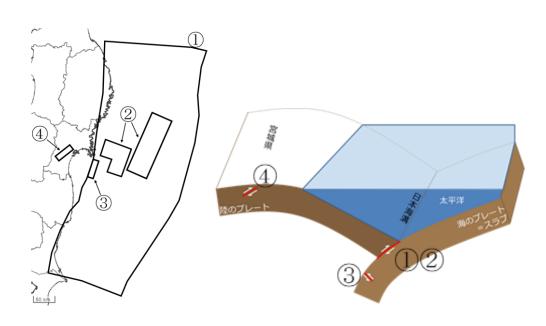
2930

5.3. その他の地震

- 31 M8 クラスの地震として、地震動・津波両面の被害が想定されることや、本県にとって象
- 32 徴的な地震であるという理由から宮城県沖地震(連動型)を選定する。これまでの調査では
- 33 宮城県沖地震は単独型と連動型の2つを対象としていたが、単独型に対する防災対策はよ
- 34 り規模の大きい連動型の被害想定に基づいた防災対策によってカバーできるため、本調査
- 35 では宮城県沖地震(連動型)のみを選定する。地震本部が評価している M8 クラスの地震に
- 36 はほかに昭和三陸地震のようなアウターライズ地震,明治三陸地震のような津波地震があ

(案)

り、いずれも大きな津波が想定されるものの、最大クラスの津波を超えるものではないため本調査では選定しない(最大クラスの地震被害想定に基づいた防災対策によってカバーさ


3 れる)。

M7クラスの地震としては、東日本大震災後頻度が高まっていることやすでに選定した宮城県沖地震(連動型)と異なるタイプであるといった観点からスラブ内地震を選定する。地震本部が評価しているその他のM7クラスの地震には宮城県沖地震(単独型)のようなプレート間地震があるが、前述のとおり本調査ではこれよりも規模が大きい宮城県沖地震(連動型)を選定していることから選定しない。

以上の選定結果を整理したのが下表であり、この 4 つの地震に対する被害想定を本調査で行う。今回選定した地震は、今後被害想定を行い、防災対策立案の基礎とするために選定した「県内の代表的な地震」である。これまでの整理のように、これ以外にも大きな被害をもたらす地震が発生しうることに十分留意する必要がある。

表 7 被害想定の対象地震

	第四次調査 (H22~H2	3)	本調査 (R3~R5)		
対	宮城県沖地震(連動型) M8.0		①東北地方太平洋沖地震 M9		
象	宮城県沖地震 (単独型)	M7.5	②宮城県沖地震(連動型)	M8.0	
地	長町 - 利府線断層帯地震	M7.5	③スラブ内地震	M7.5	
震	明治三陸地震(津波計算のみ)	M8.6	④長町 - 利府線断層帯地震	M7.5	

(案)

- 1 6. 地震動・液状化の予測
- 2 6.1. 地震動の予測
- 3 6.1.1. 検討の流れ
- 4 検討の流れは以下のとおりである。
- 5 ① 予測評価では 250m メッシュを採用する。
- 6 ② 地震本部の「震源断層を特定した地震の強震動予測手法(「レシピ」)」で説明のある 7 強震動計算のうち、国や自治体の被害想定で広く採用されている以下の方法を用いる。
 - ・ 工学的基盤まで:統計的グリーン関数法による波形計算
- ・ 地表震度の算出:工学的基盤最大速度と AVS30 (地表から深さ 30m までの平均 S
 10 波速度)による増幅率から最大地表速度を算出し,最大地表速度
 11 と地表震度の関係式から算出
 - ※ 長周期地震動、断層による地表のずれやたわみ地形については過去の事例をも とに定性的に想定する。
 - ③ 地盤モデルは浅部・深部ともに地震本部(J-SHIS)モデルを採用する。

15

12

13

14

8

16

図 13 強震動計算の概念図

6.1.2. 震源~工学的基盤までの地震動予測手法

- 3 本調査では、統計的グリーン関数法の計算方法として釜江ほか(1991)による波形合成法を
- 4 用いることとした。統計的グリーン関数法を用いた模擬地震波作成の流れを下図に示す。こ
- 5 の方法は、中小規模地震を要素地震としてその記録に含まれている震源から観測点にいた
- 6 る地震動の伝播経路の特性を利用し震源での断層理論に基づく記録の重ね合わせによって
- 7 大地震の地震動を作成しようとする経験的グリーン関数法の考え方に基づくものである。
- 8 経験的グリーン関数法の計算方法としては、Irikura(1986)のものが良く知られている。
- 9 経験的グリーン関数法は、想定地震の震源域で発生した中小規模地震の観測波形が調査
- 10 地で観測されている場合に適用可能である。しかし実際には、そのような条件に合った地震
- 11 記録が観測されていることはまれである。そのため、釜江ほか(1991)は観測波形の代わりに、
- 12 Boore(1983)による確率的地震動波形を地震基盤(Vs=3000m/s 程度の層)での波形として作
- 13 成し、これを要素波として用いて Irikura(1986)による波形合成を行う方法を提案した。この
- 14 とき、地震動の伝播経路の評価は、調査によって明らかになった浅部・深部の地盤構造を使
- 15 用して理論的方法により行っている。具体的には以下の手順に基づき計算を行っている。

16 17

18

19

① 対象とする断層面を小断層に分割し、小断層毎に、Boore(1983)の手法により ω^{-2} を満たす要素波形の振幅スペクトルの形状を求める。この振幅スペクトル形状は以下の通りである。

$$S_{A}(\omega) = \frac{R_{\phi\theta}}{4\pi\rho\beta^{3}} M_{0} \cdot \frac{\omega^{2}}{1 + \left(\frac{\omega}{\omega_{c}}\right)^{2}} \cdot \frac{1}{\sqrt{1 + \left(\frac{\omega}{\omega_{max}}\right)^{2s}}} \cdot \frac{e^{\frac{\omega R}{2Q\beta}}}{R}$$
(1-1)

2021

22

25

26

27

28

29

30

31

- $\omega_{\rm c}=2\pi f_{\rm c},\,f_{\rm c}=4.9\times 10^6 \beta (\Delta\sigma/{\rm M}_0)^{1/3},\,\omega_{\rm max}=2\pi f_{\rm max},\,S:$ 定数(ここでは 4.0), $f_{\rm max}=6$ Hz(鶴来ほか(1997),兵庫県南部地震の解析値)
- 23 M_0 は地震モーメント(Nm), ρ は密度 (g/cm^3) , β は媒質のS 波速度(m/s), $\Delta\sigma$: 応力 24 降下量(Pa), R: 震源距離(km), O: 地盤のO値である。
 - なお、観測点が震源近傍にある場合、統計的グリーン関数法の地震動振幅が過大評価されることから幾何減衰として1/(R+C)を導入した。
 - ② 要素波形の位相スペクトルは、Boore(1983)に従ってホワイトノイズに包絡形を施した波形のスペクトルをかけ合わせて設定する。位相を与える場合には乱数を用いるが、長周期成分まで考慮できるように香川(2004)に基づき、長周期(変位波形)でコヒーレントな統計的グリーン関数を生成できるように乱数を設定する。また、長周期側で各要素断層の波形の位相を揃えるため、アスペリティ、背景領域ごとに小断層に対して共通の位相を使用する。

- 1 ③ 上式中のR_{φθ}はラディエーション係数であるが、これは、各小断層から計算地点への方位角、射出角により計算する。この時、Kamae and Irikura(1992)と同様に、周
 3 波数依存型の放射特性を導入した。これは、周波数 0.25Hz 以下では理論的放射特性に従い、2.0Hz 以上では等方的な放射特性となるものである。ここでは S 波のみを考えているため、SH 波、SV 波毎に振幅スペクトルを求める。
 - ④ 小断層毎にすべり量・応力降下量が異なる場合は、それに応じて各小断層の M_0 、 $\Delta \sigma$ を設定する。
 - ⑤ 伝播経路の減衰特性 Q 値は、内閣府(2021)による次式の周波数依存の値を設定する。なお、周波数f = 1.0Hz以下では、周波数f = 1.0Hzの値を用いることとした。

$$Q = 130f^{0.77} \tag{1-2}$$

- ⑥ 上記手法で作成した計算地点での地震基盤におけるスペクトルに対して、地表までの地盤構造による増幅を考慮するため、SH 波については斜め入射のSH 波動場を、SV 波については、P-SV 波動場の応答計算を行う。
- ⑦ 求められた工学的基盤での Transverse, Radial, UD 波形を NS, EW, UD に射影する。
 - ⑧ 工学的基盤での各小断層からの波形を Irikura(1986)および入倉ほか(1997)に従って、震源断層内の破壊伝播に応じて、それぞれの成分毎に足し合わせる。これより、工学的基盤での3成分波形を求めることができる。

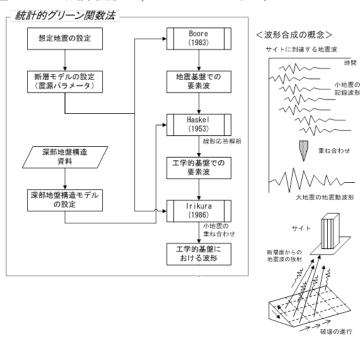


図 14 統計的グリーン関数法を用いたサイト波作成の流れ

(案)

1 6.1.3. 地表震度の算定

- 2 本調査では、工学的基盤〜地表までの地震動予測手法として、「工学的基盤における計測
- 3 震度+レシピに基づく震度増分(以下,「SGF+レシピ震度増分」という。)」により算出し
- 4 た。SGF+レシピ震度増分の算出方法を以下に示す。

5

- 6 ① 工学的基盤上面から地表への最大速度の増幅率*amp*を求める。増幅率*amp*について は、表層 30m の平均 S 波速度 AVS 30 との相関性が認められることが分かっている。
- 8 本調査では、地震ハザードステーション(以下、J-SHIS)で公開されている各メッ
- 9 シュのAVS30を用いて、以下の式で増幅率ampを算出する。

$$\log_{10} amp = 2.367 - 0.852 \cdot \log_{10} AVS30 \tag{1-3}$$

10 ② 工学的基盤上面から地表への震度増分ΔΙを以下の式で算出する。

$$\Delta I = 2.603 \cdot \log_{10} amp - 0.213 \cdot \{\log_{10} amp\}^2 - 0.426 \cdot \log_{10} PGV_b$$

$$\cdot \log_{10} amp$$
(1-4)

PGV_h: 工学的基盤上面における最大速度

11 ③ 統計的グリーン関数法により算出した工学的基盤上面における計測震度 I_b に上式 で求めた ΔI を足し合わせることで、地表地震動を算定する。

$$I = I_b + \Delta I \tag{1-5}$$

13

14 6.1.4. 地盤モデル

- 15 地盤モデルは、浅部モデル、深部モデルともに地震本部(J-SHIS)モデルを採用する。第
- 16 四次調査時に用いていたモデルは深部構造が第三次調査以前のものであり、その後の知見
- 17 が反映されていない。一方、今回採用する地震本部(J-SHIS)モデルは最新の知見が反映さ
- 18 れており、かつ、本県の特性も反映されていることから適切と判断した。

> 微地形区分 沿岸海域 山地 旧河道·旧池沼 山麓地 三角州·海岸低地 丘陵 砂州・砂礫州 火山地 砂丘 火山山麓地 砂丘·砂州間低地 火山性丘陵 干拓地 岩石台地 埋立地 砂礫質台地 磯·岩礁 河原 火山灰台地

谷底低地

扇状地

自然堤防

河道

湖沼

4 5

6

図 15 微地形区分(地震本部)

1
 2
 3

4 5

6

図 16 表層 30m 平均 S 波速度(AVS30) (地震本部)

図 17 Vs600m/s 層下面 (地震本部)

> 深度 (m) 深度 (m) Vs1100m/s層下面 0 ~ 250 250 ~ 500 500 ~ 750 750 ~ 1,000 1,000 ~ 1,250 1,250 ~ 1,500 1,500 ~ 1,750 1,750 ~ 2,000 2,000 -

4 5

6

図 18 Vs1100m/s 層下面(地震本部)

> 深度(m) Vs2100m/s層下面 $0 \sim 250$ 250 ~ 500 500 ~ 750 $750 \sim 1,000$ 1,000 ~ 1,250 1,250 ~ 1,500 1,500 ~ 1,750 1,750 ~ 2,000 2,000 -

4 5

6

図 19 Vs2100m/s 層下面(地震本部)

> 深度 (m) $0 \sim 250$ $250 \sim 500$ $500 \sim 750$ $750 \sim 750$ $750 \sim 1,000$ $1,000 \sim 1,250$ $1,250 \sim 1,500$ $1,500 \sim 1,750$ $1,750 \sim 2,000$ 2,000 -

図 20 地震基盤面(地震本部)

表 8 第四次調査との比較

	第四次調査の手法を踏襲した場合	本調査
工学的基盤 における波形計算	統計的グリーン関数法	統計的グリーン関数法
地表震度の算出	・工学的基盤波から最大速度を算出・工学的基盤最大速度とAVS30による増幅率から最大地表速度を算出・最大地表速度と地表震度の関係式	工学的基盤波から最大速度を算出工学的基盤最大速度とAVS30による増幅率から最大地表速度を算出最大地表速度と地表震度の関係式
地盤モデル	• 宮城県独自のモデル (浅部・深部)	 地震本部(J-SHIS)モデル(浅部・深部) J-SHIS地震ハザードステーションで公開されている「地震動予測地図データ」
利点	・ 第四次想定と同じ手法である。 (H15の第三次想定を踏襲)	解析手法, 地盤モデルは最新の知見に基づく。第四次想定との地盤モデルの整合性が高い。
	本県の被害の大部分を占める戸建て住宅の被害想定は可能。	本県の被害の大部分を占める戸建て住宅の被害想定は可能。
久点	広帯域(主に長周期側)の地震動が考慮できない。第三次から相当期間が経過しており,最新の知見が反映されていない。	• 広帯域(主に長周期側)の地震動が考慮できない。

(案)

1 6.1.5. 強震断層パラメータ

- 2 ①東北地方太平洋沖地震
- 3 「最大クラスの津波浸水想定」に対応した強震動(震度等)の計算を行う。最大クラスの
- 4 津波計算で3モデルのうち、震度が最大となる東北地方太平洋沖地震の強震動計算を実施。
- 5 強震断層モデルは、内閣府モデルを用いる。
- 6 ※ 津波浸水想定では、強震動(震度等)を計算していないため。津波はすでに公表したも
- 7 のを活用する。

8

表 9 東北地方太平洋沖地震の強震断層パラメータ

震源パラメータ	設定方法	断層全体	三陸沖 中部	宮城県沖	福島県沖	茨城県沖	単位
走向0			195	195	195	195	0
傾斜角δ			13	13	13	13	0
すべり角 γ			90	90	90	90	0
断層モデル上端深さ			36.7	34.5	41.2	36.7	km
断層モデル面積S		90,000	2,000	3,500	2,000	2,000	km ²
断層モデル長さ $L_{ m model}$			50	70	50	50	km
断層モデル幅W _{model}			40	50	40	40	km
応力降下量Δσ		4.0	25.3	24.2	24.0	24.0	MPa
地震モーメントM ₀		2.26	9.30	2.10	8.80	8.80	Nm
		$\times 10^{22}$	$\times 10^{20}$	$\times 10^{21}$	$\times 10^{20}$	$\times 10^{20}$	
モーメントマグニチュード		8.8	7.9	8.1	7.9	7.9	
剛性率µ			4.1×10^{10}			Pa	
S波速度β			3,820			m/s	
密度ρ			2,800			kg/m³	
破壊伝播速度 Vr			2,700			m/s	
平均すべり量D	$D = M_0/(\mu \cdot S)$	6.1	11.4	14.7	10.8	10.8	m

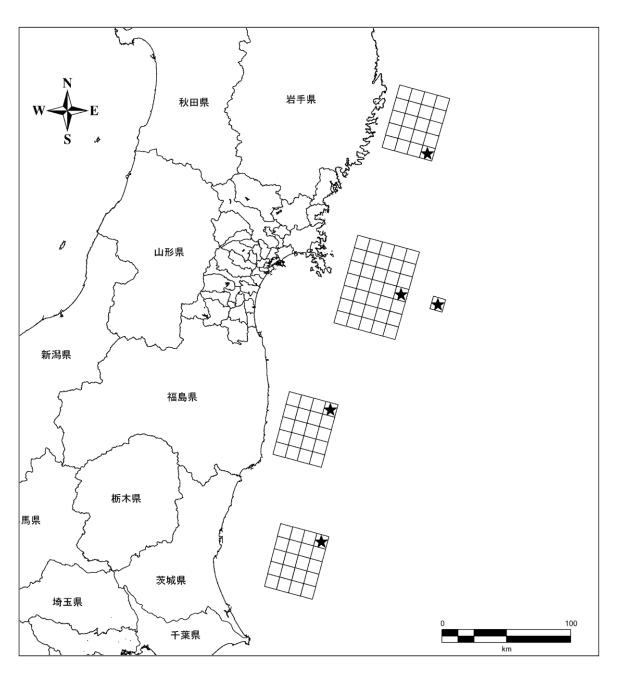


図 21 東北地方太平洋沖地震の断層モデル地表投影図 (★:破壊開始点)

1 ②宮城県沖地震(連動型)

2 断層パラメータは地震本部の「震源断層を特定した地震の強震動予測手法」(強震動予測3 レシピ)により設定した。アスペリティは、第四次調査を踏襲する。

4 5

表 10 宮城県沖地震(連動型)の強震断層パラメータ

巨視的震源パラメータ	設定方法	A1	A2	В	単位
断層モデル原点 緯度	地震本部	38.41	38.2	38.95	٥
断層モデル原点 経度	地震本部	142.49	142.39	143.52	0
走向0	地震本部	200	200	205	٥
傾斜角δ	地震本部	21	21	12	0
すべり角γ	地震本部	85	85	90	۰
断層モデル上端深さ	地震本部	26	26	14	km
断層モデル面積S	地震本部	2,266	1,449	6,105	km ²
断層モデル長さ $L_{ m model}$	地震本部	36	40	132	km
断層モデル幅W _{model}	地震本部	64	36	46	km
アスペクト比	$L_{ m model}/W_{ m model}$	0.6	1.1	2.9	
断層モデル面積 S_{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	2,158	1,341	6,505	km ²
平均応力降下量Δσ	A1,A2:Seno et al. (1980)	7.0	7.0	4.1	MPa
	B: $M_0 = 16/(7 \cdot \pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$				
地震モーメント M_0	A1,A2: $M_0 = 16/(7 \cdot \pi^{3/2}) \cdot \Delta \sigma \cdot S^{3/2}$	2.88	1.41	8.30	Nm
	B:断層全体から A1、A2 を除く	$\times 10^{20}$	$\times 10^{20}$	× 10 ²⁰	
モーメントマグニチュー	$\log M_0 = 1.5Mw + 9.1$	7.6	7.4	7.9	
ド					
剛性率µ	$\mu = \rho \beta^2$		4.7×10^{10}		Pa
S波速度β	地震本部		3,900		m/s
密度ρ	地震本部		3,100		kg/m ³
破壊伝播速度 Vr	菊池 (2002)		3,000		m/s
平均すべり量D	$D = M_0/(\mu \cdot S)$	2.9	2.3	2.7	m
短周期レベルA	A1:1978 宮城沖、A2、B は A1 のA _{DAN} との比	8.40	6.62	1.20	Nm
		$\times 10^{19}$	$\times 10^{19}$	$\times 10^{20}$	/s ²
	$A = 2.46 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	3.50	2.76	4.98	Nm
カン)A _{DAN}		$\times 10^{19}$	$\times 10^{19}$	$\times 10^{19}$	/s ²
断層全体の等価半径R	$R = \sqrt{S/\pi}$	26.21	20.66	45.50	km

微視的	カ震源パラメータ	設定方法	A1	A2	В	単位
	面積 S_a	$S_a = \pi r^2$	376.07	233.69	1133.61	km ²
全ア	アスペリティの個数		2	1	2	
ティペ	平均すべり量 D_a	$D_a = \xi \cdot D \ \xi = 2$	5.7	4.5	5.4	m
1]	地震モーメント M_{0a}	$M_{0a} = \mu D_a S_a$	1.0×10^{20}	4.9×10^{19}	2.9×10^{19}	Nm
	平均応力降下量 $\Delta\sigma_a$	$\Delta \sigma_a = (S / S_a) \cdot \Delta \sigma$	40.17	40.17	21.99	MPa
11 .	面積 S_{a1}	$S_{a1} = S_a \cdot SR_{a1}$	188.03.22	233.69	377.87	km ²
リアス	地震モーメント <i>M</i> _{0a1}	$M_{0a1} = \mu D_{a1} S_{a1}$	5.0×10^{19}	4.9×10^{19}	7.6×10^{19}	Nm
イネ	平均すべり量 D_{a1}	$D_{a1} = (\gamma_1 / \Sigma \gamma_i^3) \cdot D_a$	5.66	4.46	4.24	m
_	実効応力 σ_{a1}	$\sigma_{a1} = \Delta \sigma_a$	40.17	40.17	21.99	MPa
	面積Sa2	$S_{a2} = S_a \cdot SR_{a2}$	188.03.22		755.74	km ²
アス	地震モーメントM _{0a2}	$M_{0a2} = \mu D_{a2} S_{a2}$	5.0×10^{19}		2.1×10^{20}	
~						Nm
リテ				X		
イ	平均すべり量 <i>D</i> _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	5.66		6.00	m
2	実効応力 σ_{a2}	$\sigma_{a2} = \Delta \sigma_a$	40.17	/ \	21.99	MPa
	面積S _b	$S_b = S - S_a$	1,782	1,107	5,371	km ²
背域 景	地震モーメントM _{0b}	$M_{0a} = M_0 - M_{0a}$	1.9×10^{20}	0.9×10^{20}	5.4×10^{20}	Nm
域領	平均すべり量D _b	$D_b = M_{0b}/(\mu \cdot S_b)$	2.23	1.76	2.13	m
	実効応力 σ_b	$\sigma_b = (D_b / W_b) \cdot \sqrt{\pi} / D_a \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_a$	3.40	6.73	4.48	MPa

> 岩手県 山形県

図 22 宮城県沖地震(連動型)の断層モデル地表投影図

★:破壊開始点、矩形:要素断層、太線矩形:アスペリティ

1 ③スラブ内地震

2 スラブ内地震は、2011年(平成23年)、2021年(令和3年)、2022年(令和4年)と震 3 災後頻発している。それらの発生位置や、本県への被害の大きさを考慮し、震源位置を過去 4 よりも陸側かつ仙台圏域側に設定した。断層パラメータは地震本部の「震源断層を特定した 5 地震の強震動予測手法」(強震動予測レシピ)により設定した。

6 7

表 11 スラブ内地震の強震断層パラメータ

		ノ内地長の独展例僧ハノメーグ		
巨視的	震源パラメータ	設定方法		単位
断層モ	デル原点 緯度	福島県沖の地震など	37.85	٥
	デル原点 経度	福島県沖の地震など	141.35	0
走向 θ		福島県沖の地震など	17	0
傾斜角		福島県沖の地震など	45	0
すべり		福島県沖の地震など	90	0
	デル上端深さ	福島県沖の地震など	60	km
	レベルA	$A = 9.84 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$	1.29×10^{20}	Nm/s ²
	生成域の面積の	$A = 9.84 \times 10^{10} \times (M_0 \times 10^7)^{1/3}$ $\gamma_{\text{SMGA}} = \frac{16A^2 S_a^2}{49\pi^4 \beta^4 M_0^2}$ $S_a = 1.25 \times 10^{-16} \times (M_0 \times 10^7)^{2/3}$	20	
	層の面積に対する比γ _{SMGA}	$^{\gamma_{\text{SMGA}}} = 49\pi^4 \beta^4 M_0^2$		
	生成域と地震モーメントとの	$S_a = 1.25 \times 10^{-16} \times (M_0 \times 10^7)^{2/3}$	213.9	km ²
	関係式			
断層モ	デル面積S	$S = \frac{7\pi^2 \beta^2 M_0}{4A\gamma_{\text{SMGA}}^{0.5}}$	1079.8	km ²
	3			
	デル幅 W	福島県沖の地震など	25	km
	デル長さL	L = S/W	43.2	km
断層モ	デル幅W _{model}	手続き化	24	km
	デル長さ $L_{ m model}$	手続き化	44	km
	2017年	$L_{ m model}/W_{ m model}$	1.83	, ,
	デル面積S _{model}	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$	1,056	km ²
	べり量D	$D = M_0/(\mu \cdot S)$	4.3	m
	力降下量Δσ	$\Delta \sigma = (7/16) \cdot M_0 / (S/\pi)^{1.5}$	15.4	MPa
剛性率	•	$\mu = \rho \beta^2$	4.8×10^{10}	Pa
S波速	度β	佐藤・巽 (2002)	4,000	m/s
密度ρ	ten to to	佐藤・巽 (2002)	3,000	kg/m ³
破壊伝	播速度 Vr	$V_r = 0.72 \cdot \beta$	2,800	m/s
域 強	面積S _{SMGA}	$S_{\text{SMGA}} = \gamma_{\text{SMGA}} \times S$	213.9	km ²
全震	強震動生成域の個数		2	
体動生		$D_{\text{SMGA}} = \xi \cdot D, \xi = 2$	8.6	m
一一元	地震モーメントM _{0SMGA}	$M_{0_{\text{SMGA}}} = \mu D_{\text{SMGA}} S_{\text{SMGA}}$	8.9×10^{19}	Nm
7-74	平均靜的心力降下重 $\Delta\sigma_{ m SMGA}$	$\Delta \sigma_{\rm SMGA} = (S/S_{\rm SMGA}) \cdot \Delta \sigma$	77.6	MPa
成強	面積S _{SMGA1}	$S_{\rm SMGA1} = S_{\rm SMGA}/2$	107.0	km ²
域 震	地震モーメントM _{0SMGA1}	$M_{0_{\rm SMGA1}} = \mu D_{\rm SMGA1} S_{\rm SMGA1}$	4.4×10^{19}	Nm
1 動生		$D_{\rm SMGA1} = D_{\rm SMGA}$	8.6	m
	平均静的応力降下量 $\Delta\sigma_{SMGA1}$	$\Delta \sigma_{\rm SMGA1} = \Delta \sigma_{\rm SMGA}$	77.6	MPa
成強	面積S _{SMGA2}	$S_{\rm SMGA2} = S_{\rm SMGA}/2$	107.0	km ²
域 震	地震モーメントM _{0SMGA2}	$M_{0_{\text{SMGA2}}} = \mu D_{\text{SMGA2}} S_{\text{SMGA2}}$	4.4×10^{19}	Nm
2 生	平均すべり量D _{SMGA2}	$D_{\rm SMGA2} = D_{\rm SMGA}$	8.6	m
	平均静的応力降下量 $\Delta\sigma_{SMGA2}$	$\Delta \sigma_{\rm SMGA2} = \Delta \sigma_{\rm SMGA}$	77.6	MPa
背	面積S _b	$S_b = S - S_{\rm SMGA}$	865.9	km ²
背景	地震モーメントM _{ob}	$M_{0a} = M_0 - M_{0a}$	1.4×10^{20}	Nm
領域	背景領域の $D_b = M_{0b}/(\mu \cdot S_b)$	$D_b = M_{0b}/(\mu \cdot S_b)$	3.3	m
-33	平均静的応力降下量	$(24)\vec{\pi}: \sigma_b = (D_b / W_b) \cdot \sqrt{\pi} / D_a \cdot r \cdot \Sigma \gamma_i^3 \cdot \sigma_a$	14.4	MPa

> 秋田県 岩手県 山形県 福島県

4 5

図 23 スラブ内地震の断層モデル地表投影図

6 7 ★:破壞開始点、矩形:要素断層、太線矩形:強震動生成域

1 ④長町 - 利府線断層帯地震

2 断層パラメータは地震本部の「震源断層を特定した地震の強震動予測手法」(強震動予測 3 レシピ)及び「全国地震動予測地図 2020 年版」を参考に設定する。上端深さ,アスペリティは第四次想定で検討していた長町-利府線断層帯地震に基づき設定した。

56

表 12 長町 - 利府線断層帯地震の強振断層パラメータ

長町-利府線断層帯(2001)

長町-利府線断層帯(2001)						
	長期評価	設定	と値			
71/24/1997		平均ケース	最大ケース			
平均活動間隔	3000年程度以上	5000年	5000年			
最新発生時期	約16000年前以後(十分に特定できていな					
30年発生確率	1%以下	0.60%	0.60%			
50年発生確率	2%以下 (1.0%	1.0%			
	(北端) 北緯 38°17′ -38°22′ 東経 140°56′ -141°02′	-	_			
断層帯原点	(南端) 北緯 38°09′ -38°11′					
	東経 140°41′ -140°45′	-	-			
活断層長さ L	21 – 40 km	40	km			
マグニチュード M	7.0-7.5 程度	7.				
巨視的震源パラメータ	設定方法	, ·				
		北緯 3	8.387°			
断層モデル原点	地中の上端における北端		41.043°			
走向 θ	長期評価の端点を結ぶ方向	N231	.9°E			
傾斜角 δ	「西傾斜35-45°」	40)°			
すべり角 γ	「北西側隆起の逆断層」	90)°			
断層モデル上端深さ	微小地震の発生と地震基盤深さを参考		km			
断層モデル長さ $L_{ m model}$	手続き化の方法に従い設定	42				
断層モデル幅 $W_{ m model}$	手続き化の方法に従い設定	187				
断層モデル面積 $S_{ m model}$	$S_{\text{model}} = L_{\text{model}} \times W_{\text{model}}$		km ²			
地震モーメント M ₀	$\log M_0 = 1.17M + 10.72$	3.15E+19				
モーメントマグニチュード M	$M_{\rm w} = (\log M_0 - 9.1) / 1.5$	6.				
静的応力降下量 $\Delta \sigma$	$\Delta \sigma = 7/16 \cdot M_0 / R^3$		MPa			
平均すべり量 D_{model}	$D_{\text{model}} = M_0 / (\mu \cdot S_{\text{model}})$	1.3				
短周期レベルA	$A = 2.46 \cdot 10^{17} \times M_0^{1/3}$	1.67E+19				
微視的震源パラメータ	$G = \frac{2}{3} \times \frac{7}{3} \times \frac{1}{3} \times $	ケース 196.3				
$ \frac{e}{2} $ 直積 S_a ア 平均中でり量 D_a	$S_a = \pi r^2, r = 7\pi / 4 \cdot M_0 / (A \cdot R) \cdot \beta^2$	186.3 2.6	km			
F ス 実効応力 σ_a	$D_{a} = \gamma_{D} \cdot D_{\text{model}}, \ \gamma_{D} = 2.0$ $\sigma_{a} = \Delta \sigma_{a} = 7/16 \cdot M_{0}/(r^{2} \cdot R)$	15.0				
イペ 地震モーメント M _{0a}	$M_{0a} = \mu \cdot D_a \cdot S_a$	1.51E+19				
ペ第 面積 S _{al}	$S_{a1} = S_a \cdot (2/3)$	124.2				
リ 1 平均すべり量 $D_{\rm al}$	$D_{a1} = (\gamma_1/\Sigma \gamma_1^3) \cdot D_a$	2.9				
テア 実効応力 σ_{al}	$\sigma_{\rm al} = \sigma_{\rm a}$	15.0				
イス計算用面積	2km メッシュサイズ	120	km ²			
ペ第 面積 S _{a2}	$S_{a2} = S_a \cdot (1/3)$	62.1				
リ 2 平均すべり量 D _{a2}	$D_{a2} = (\gamma_2 / \Sigma \gamma_i^3) \cdot D_a$	2.0				
テア 実効応力 σ_{a2}	$\sigma_{\mathrm{a2}} = \sigma_{\mathrm{a}}$	15.0	MPa			
イス 計算用面積	2km メッシュサイズ	60	km ²			
電積Sb でわまべり是 D	$S_b = S_{\text{model}} - S_a$	569.7				
■ Tayy · 、り里 Db	$D_{b} = M_{0b} / (\mu \cdot S_{b})$	0.9				
α 大知心力 σ_b	$\sigma_{\rm b} = (D_{\rm b}/W_{\rm b}) \cdot (\pi^{1/2}/D_{\rm a}) \cdot r \cdot \Sigma \gamma_{\rm i}^{3} \cdot \sigma_{\rm a}$		MPa			
_域 地震セーメント M _{0b}	$M_{0b} = M_0 - M_{0a}$	1.64E+19				
計算用面積	2km メッシュサイズ	576	km [*]			

7 8

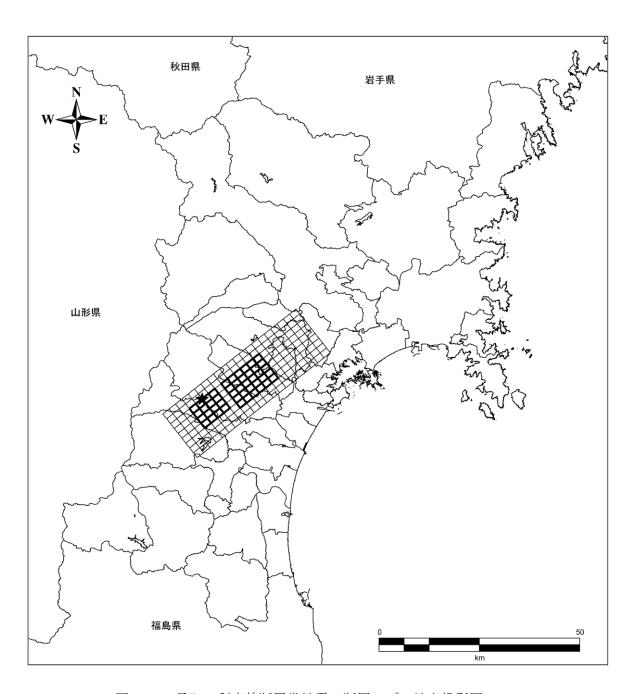


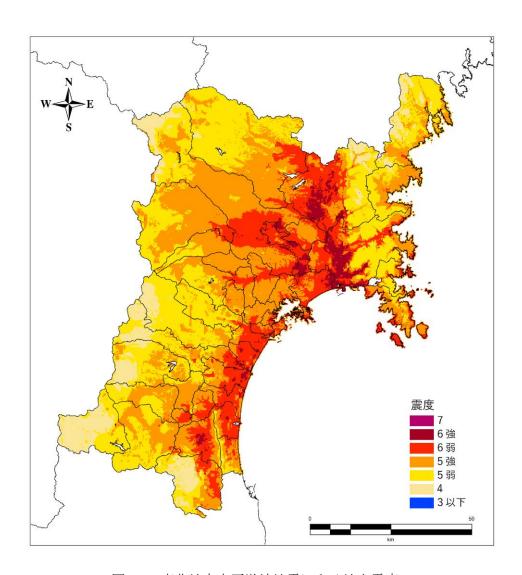
図 6.24 長町 - 利府線断層帯地震の断層モデル地表投影図

★:破壊開始点、矩形:要素断層、太線矩形:アスペリティ

6.1.6. 計算結果と評価

2 ①東北地方太平洋沖地震

県内の広い範囲で震度6弱から震度6強の震動が予想される。東日本大震災の実績と比較して1階級程度震度が異なっているものの、おおむね再現できていると判断される。250m四方の区画単位(250mメッシュ)で計算を行っており、1区画(メッシュ)内はすべて同一として取り扱っていることや地震計が設置されている環境を必ずしも正確に反映して


いないことなどから差が発生したものと推測される。

7 8

1

3

45

9

図 25 東北地方太平洋沖地震による地表震度

②宮城県沖地震(連動型)

県内の広い範囲で震度6弱,一部の地域で震度6強の震動が予想される。東北地方太平洋 沖地震よりもマグニチュードが小さいため、震度も小さくなっている。

第四次調査での検討と比較して1階級程度震度が異なっている。これは強震動解析手法, 地盤モデルを更新したことが主な原因と推測される。

6

1

2

3

4

5

7

8

5強 5弱

9

図 26 宮城県沖地震(連動型)による地表震度

1 ③スラブ内地震

県内の広い範囲で震度6強,一部の地域で震度7の震動が予想される。また,過去のスラブ内地震と比較して全体的に震度が1階級程度大きくなっている。これは過去のスラブ内地震より,マグニチュードが大きく震源も近いためと推測される。

,

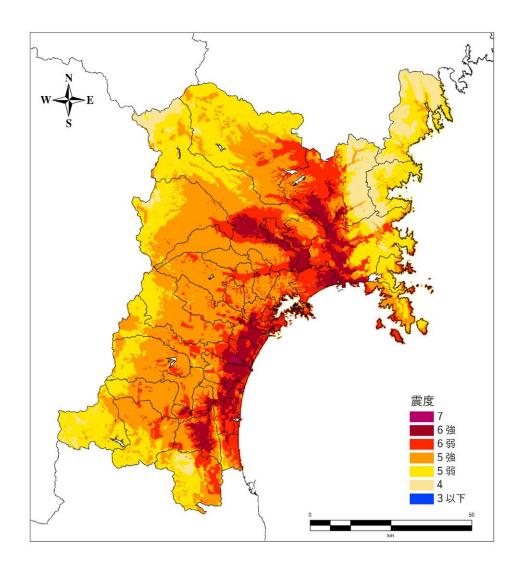


図 27 スラブ内地震による地表震度

- 1 ④長町 利府線断層帯地震
- 2 仙台圏を中心に震度6強,一部の地域で震度7の震動が予想される。また他の3つの地震
- 3 と比較して震源が浅いため、局所的に強い震動が予想される。
- 4 第四次調査での検討と比較して震度階級1程度異なっているが、強震動解析手法、地盤モ
- 5 デルを更新したことが主な原因と推測される。
- 6 本調査で採用している計算手法では考慮できていないが、実際に地震が発生した場合、断
- 7 層による地表のずれ、たわみがが生じる可能性がある。

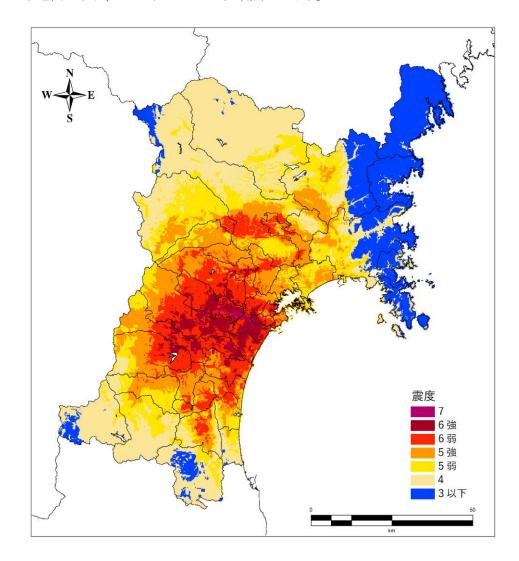


図 28 長町 - 利府線断層帯地震による地表震度

(案)

1 6.1.7. その他

2 本調査では、強震動計算に統計的グリーン関数法を用いた。本手法は被害想定に広く用い

3 られている実績ある手法であるが、一方で干渉、共振、指向性、方向性等を考慮できないと

4 いう欠点がある。このような地震動と被害の関係について、実現象と今回の計算で考慮でき

5 ていない部分があることに留意が必要である。

1 6.2. 液状化計算

2 6.2.1. 液状化予測手法

- 3 地盤の液状化予測は、国(内閣府)や自治体の被害想定で広く用いられている FL値・PL
- 4 値により行う。FL値は地表震度、地盤のN値、地下水位、平均粒度等から求められる各地
- 5 層の液状化に対する抵抗率である。この F_L 値を深さ方向に積分した地盤全体の液状化危険
- 6 度(PL値:液状化可能性指数)により予測する。計算の条件は国(内閣府)の「日本海溝・
- 7 千島海溝沿いの巨大地震の被害想定(2021年(令和3年)12月)」の条件と同様とし、地下
- 8 水位は一律 G.L.-1m としている。また、個別の造成や液状化対策は考慮していない。

9

10 表 13 計算条件 液状化対象微地形分類

No.	微地形分類(地盤タイプ)	区分
1	沿岸地域	液状化検討対象外
2	山地	液状化検討対象外
3	丘陵	液状化検討対象外
4	火山地	液状化検討対象外
5	火山山麓地	液状化検討対象外
6	火山性丘陵	液状化検討対象外
7	岩石台地	液状化検討対象外
8	砂礫質台地	液状化検討対象外
9	火山灰台地	液状化検討対象外
10	谷底低地	液状化検討対象地形
11	扇状地	液状化検討対象地形
12	自然堤防	液状化検討対象地形
13	後背湿地	液状化検討対象地形
14	旧河道・旧池沼	液状化検討対象地形
15	三角州・海岸低地	液状化検討対象地形
16	砂州・砂礫州	液状化検討対象地形
17	砂丘	液状化検討対象地形
18	砂丘・砂州間低地	液状化検討対象地形
19	干拓地	液状化検討対象地形
20	埋立地	液状化検討対象地形
21	礫・岩礁	液状化検討対象外
22	河原	液状化検討対象外
23	河道	液状化検討対象外
24	湖沼	液状化検討対象外

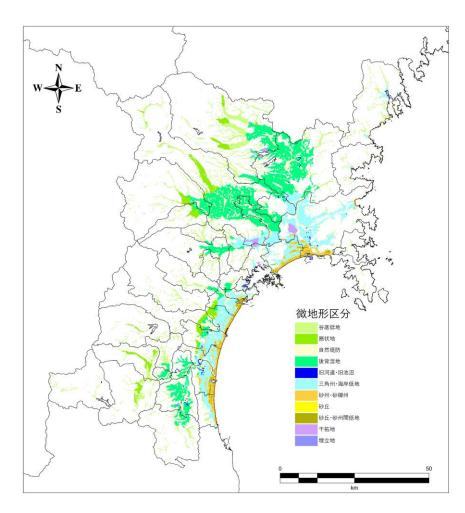


図 29 液状化対象微地形区分

| 浅部地盤モデル+| 地盤の物性値+| (単位体積重量・平均粒径・細粒分含有率)+| 計測震度+| 地下水位+| 地下水位+|

図 30. 液状化予測手法の流れ

4 5

1

2

1 砂質土層の液状化判定手法は「道路橋示方書・同解説(2017年(平成29年)12月発行)」

- 2 によるものを採用した。地震動計算結果より地表から 20m までの地中のせん断応力(L)と液
- 3 状化対象層の繰り返し三軸強度比(R)を求め液状化対象層ごとに液状化に対する抵抗率
- 4 $(F_L = R/L)$ を求めた。地層全体の液状化可能性指数 (P_L) を評価する。以下に手順を示す。

5

6 ① 動的せん断強度比Rについては、下記の方法で求めた。

$$R = C_W \cdot R_L$$

$$R_L = \begin{cases} 0.082\sqrt{N_a/1.7} & (N_a < 14) \\ 0.082\sqrt{N_a/1.7} + 1.6 \times 10^{-6} \cdot (N_a - 14)^{4.5} & (N_a \ge 14) \end{cases}$$

$$(N_a < 14)$$

 C_W : 地震時特性による補正係数(タイプ I の地震動の場合)

$$C_W = 1.0$$

7 ② N値及び F_c の算出については、亀井ほか(2002)の式に従った。

$$N_a = N_1 + \Delta N$$

$$\Delta N = \begin{cases} 0.0 & (F_c < 8\%) \\ 20.769 \times \log_{10}(F_c) - 18 & (8\% \le F_c < 40\%) \\ 15.27 & (F_c \ge 40\%) \end{cases}$$

ただし,

N_a: 粒度の影響を考慮する補正N値

 N_1 :有効上載圧 100kN/ m^2 相当に換算したN値

ΔN: 東京低地における細粒分の影響を補正するN値

8 ③ 地震時せん断応力比Lについては、下記の方法で求めた。

$$L = \gamma_d \cdot K_s \cdot \sigma_V / \sigma_V'$$
$$\gamma_d = 1.0 - 0.015x$$
$$\zeta \subset V\zeta.$$

γ_d:地震時のせん断応力比の深さ方向の低減係数

Ks:液状化に対する設計震度

x: 地表面からの深さ(m)

 σ_{v} : 地表面からの深さxにおける全上載圧 (kN/m^{2})

 σ_{V}' : 地表面からの深さxにおける有効上載圧 (kN/m^{2})

 $K_s = A_{max}/9.8$

 A_{max} : 地表最大加速度 (m/s^2)

9.8: 重力加速度(m/s²)

(案)

- 1 地表最大加速度は地表の震度より、童・山崎(1996)による計測震度Iと最大加速度
- 2 PGAの関係式を用いて求めた。

$$PGA = 10^{-0.23 + 0.51 \cdot I}$$

3

5

④ R及びLから液状化に対する抵抗率を求め,震度の重み係数を考慮して F_L を積分し、液状化指数 P_L を計算する。

$$F_L = R/L$$

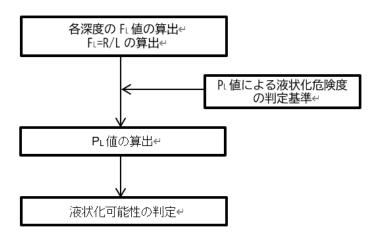
$$P_L = \int_0^{20} (1 - F_L)(10 - 0.5x) dx$$

 P_L :液状化指数

ここに,

 F_L :液状化に対する抵抗率

x: 地表面からの深さ(m)

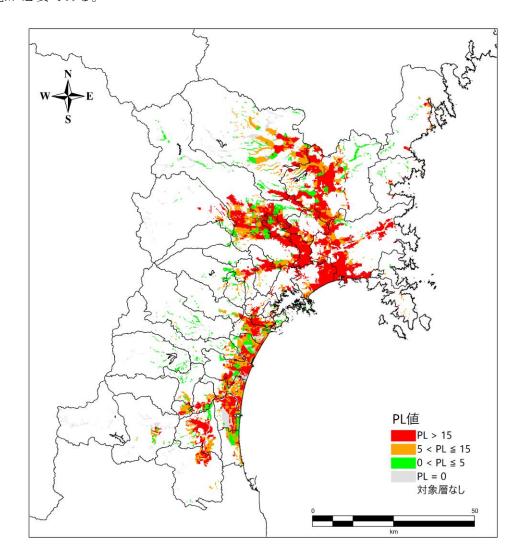

6 メッシュごとの P_L 値より、以下の基準を参考に液状化危険度を判定する。

7 8

表 14 計算条件 PL値による液状化判定区分(岩崎他(1980))

危険度ランク	極めて低い	低い	やや高い	極めて高い
P _L 値	$P_L=0$	$0 < P_L \le 5$	$5 < P_L \le 15$	$15 < P_L$
細木	液状化に関する詳	特に重要な構造物	重要な構造物に対	液状化に関する詳
調査及び	細な調査は不要	に対してより詳細	してはより詳細な	細な調査と液状化
対策の		な調査が必要	調査が必要	対策は不可避
			液状化対策が一般	
必要性			的には必要	

9



10

図 31 P_L値の算定法

1 6.2.2. 計算結果

- 2 比較的揺れが局所的である長町 利府線断層帯地震を除き北上川・鳴瀬川流域や沿岸部
- 3 で液状化危険度が高いという結果になった。
- 4 なお、過去に液状化を起こした地点は再液状化の可能性が高いため本計算結果に加えて
- 5 注意が必要である。

6

図 32 東北地方太平洋沖地震による液状化危険度 (メッシュが持つ代表地点における危険度)

8 9

7

P _L =0	$0 < P_L \le 5$	$5 < P_L \le 15$	15 <p<sub>L</p<sub>
自然地盤の危険度 はほとんどない	危険度は低い	危険度は やや高い	危険度は高い

10

※個別の造成や液状化対策は考慮していない。

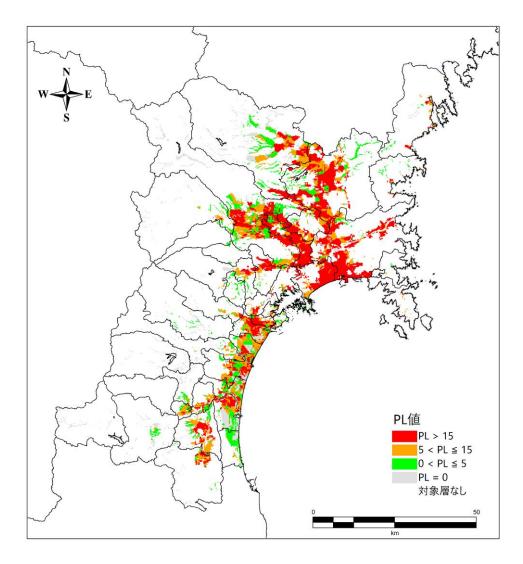


図 33 宮城県沖地震(連動型)による液状化危険度 (メッシュが持つ代表地点における危険度)

$P_L=0$	$0 < P_L \le 5$	$5 < P_L \le 15$	15 <p<sub>L</p<sub>
自然地盤の危険度 はほとんどない	危険度は低い	危険度は やや高い	危険度は高い

※個別の造成や液状化対策は考慮していない。

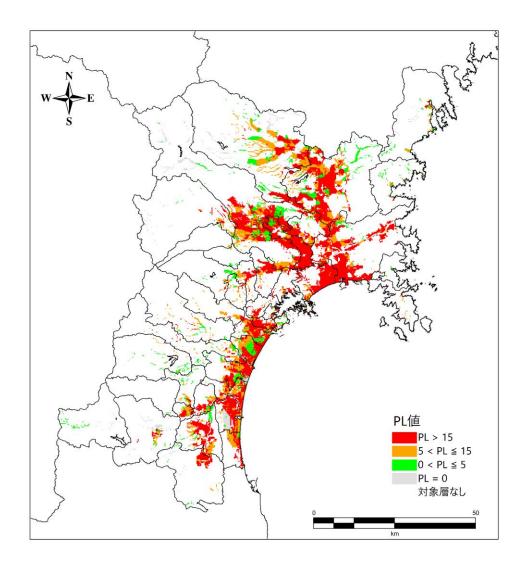


図 34 スラブ内地震による液状化危険度 (メッシュが持つ代表地点における危険度)

$P_L=0$	$0 < P_L \le 5$	$5 < P_L \le 15$	15 <p<sub>L</p<sub>
自然地盤の危険度 はほとんどない	危険度は低い	危険度は やや高い	危険度は高い

※個別の造成や液状化対策は考慮していない。

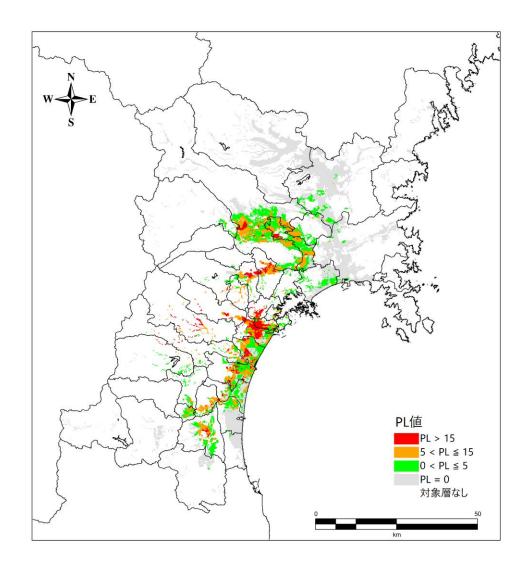


図 35 長町 - 利府線断層帯地震による液状化危険度 (メッシュが持つ代表地点における危険度)

$P_L=0$	$0 < P_L \le 5$	5 <p<sub>L≦15</p<sub>	15 <p<sub>L</p<sub>
自然地盤の危険度 はほとんどない	危険度は低い	危険度は やや高い	危険度は高い

 ※個別の造成や液状化対策は考慮していない。

1 7. 津波の予測

2 7.1. 概要

- 3 津波の検討は2022年(令和4年)5月に公表した最大クラスの津波浸水想定の条件を用
- 4 いることを基本とする。また、東北地方太平洋沖地震の津波は公表済みの津波浸水想定を活
- 5 用することから、本調査では宮城県沖地震(連動型)とスラブ内地震の予測計算を行う。

6 7

7.2. 波源断層パラメータの設定

- 8 波源断層パラメータは地震本部による「波源断層を特性化した津波の予測手法(津波レシ
- 9 ピ)」に基づき設定した。大すべり域は、津波が大きくなるよう太平洋プレートの浅部側に
- 10 設定した。

11

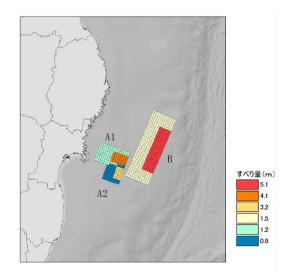

12

表 15 計算条件

	X IJ 可异木门						
項目	計算条件						
解析領域	太平洋~宮城県沿岸						
メッシュ構成	沖合から 450m 領域:三陸沖,150m 領域:三陸南沖 50m 領域:宮城県沿岸,10m 領域:宮城県沿岸						
モデル方程式	非線形 2 次元モデル ・運動方程式 (流量, 流速を計算)・連続方程式 (水位を計算)						
数値解法	有限差分法(Leap - frog 法)						
対象津波	宮城県沖地震(連動型),スラブ内地震						
境界条件	沖合:自由透過境界 海岸:450m~10m領域 移動境界(遡上) 越流:本間の越流公式 遡上先端(打切り水深):1cm						
地形条件 (地盤変動)	地震による地盤隆起・沈降:各断層モデルによる 地盤変動量を反映(陸域の隆起量は考慮しない)						
潮位条件	各領域の朔望平均満潮位						
計算時間	津波の最大波を十分含む時間帯として地震発生後:6時間						
その他	地形:復興まちづくり計画を反映する 防潮堤・河川堤防:津波越流時に「破壊」 二線堤:「非破壊」 粗度係数:小谷ら(1998)に従い,復興まちづくり計画 による土地利用に応じて設定。						

表 16 宮城県沖地震(連動型)の波源断層パラメータ

巨視的波源断層特性	設定値			
セグメント	A1	A2	В	
断層面積 S (km²)	2,158	1,341	6,505	
地震モーメント <i>M</i> ₀ (Nm)	2.9×10^{20}	1.4×10^{20}	8.3×10^{20}	
モーメントマグニチュード Mw	7.6	7.4	7.9	
平均応力降下量 $\Delta\sigma$ (MPa)	7.0	7.0	3.8	
剛性率 μ (N/m²)	6.5×10^{10}	6.5×10^{10}	5.0×10^{10}	
平均すべり量 <i>D</i> (m)	2.1	1.6	2.6	
微視的波源断層特性	設定値			
大すべり域の平均すべり量 D_L (m)	4.1	3.2	5.1	
大すべり域の面積 S_L (km²)	647	402	1951	
背景領域の平均すべり量 <i>D_B</i> (m)	1.2	0.9	1.5	
背景領域の面積 S_R (km^2)	1,511	939	4,554	

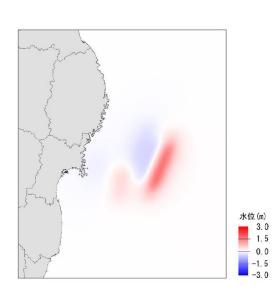
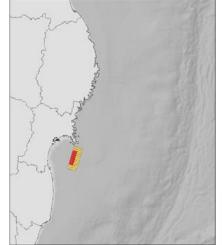



図 36 宮城県沖地震(連動型)の波源断層モデル,初期水位

表 17 宮城県沖地震(連動型)の波源断層パラメータ

巨視的波源断層特性	設定値
断層面積 S (km ²)	1,800
地震モーメント M ₀ (Nm)	2.2×10^{20}
モーメントマグニチュード Mw	7.5
平均応力降下量 Δσ (MPa)	15.4
剛性率 µ (N/m²)	6.5×10^{10}
平均すべり量 D (m)	3.2
微視的波源断層特性	設定値
大すべり域の平均すべり量 <i>D_L</i> (m)	6.4
大すべり域の面積 <i>S_L</i> (km ²)	324
大すべり域の面積 S_L (km²) 背景領域の平均すべり量 D_B (m)	324 1.8

すべり量 (m) 6.4 1.8

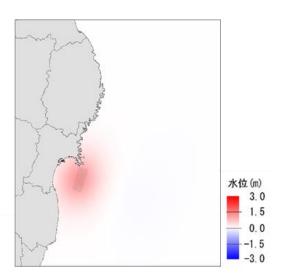


図 37 スラブ内地震の波源断層モデル、初期水位

7.3. 計算結果 (最大クラスの津波浸水想定との比較)

1

2	今回計算した2つの津波の計算結果を、最大クラスの津波浸水想定と比較する形で整理
3	した。
4	沿岸(海岸線から 20m 程度沖合)における津波の高さは東北地方太平洋沖地震(最大ク
5	ラスの津波浸水想定)で最大約 22m,宮城県沖地震(連動型)で最大約 8m,スラブ内地
6	震で最大約 1m が予測される。
7	代表地点(海岸線から 250~500m 程度沖合)における予測では,影響開始時間,最大波
8	津波水位ともに、東北地方太平洋沖地震(最大クラスの津波浸水想定)が最も危険側であ
9	ると予測された。影響開始時間は、地震発生から初期水位±20cm の変化が生じるまでの時
10	間と定義している。そのため、影響開始時間の定義となる水位を変えた場合、この順序も
11	変わる可能性がある。
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	

各用語の定義は最大クラスの津波浸水想定と同じ

(https://www.pref.miyagi.jp/soshiki/bousai/tsunamikyougikai.html)

表 18 市町村別に最大となる沿岸の津波の高さ (海岸線から 20m 程度沖合における津波の最大水位 (T.P.m))

宮城県沖地震(連動型)	(事後の) (事後	召市唐桑町唯越 付近 1.4m 気仙沼市唐桑町鮪立 付近	整町歌津馬場 付近 1.0m 南三陸町汐見 付近	5雄勝町雄勝 付近 1.1m 石巻市雄勝町雄勝 付近	叮塚浜 付近 0.8m 女川町野々浜 付近	島市宮戸鹿嶌 付近 1.3m 東松島市大塚 付近	叮松島桜岡入 付近 1.3m 松島町早川 付近	叮赤沼浜田 付近 1.2m 利府町須賀 付近	节新浜町 付近 1.2m 塩竈市新浜町 付近	英町韮山 付近 1.2m 七ヶ浜町遠山 付近	成市亲 付近 1.0m 多質城市栄 付近	节宫城野区港 付近 1.0m 仙台市宫城野区港 付近	节下增田 付近 0.9m 名取市北釜 付近	h藤曽根 付近 0.9m 岩沼市川向 付近		叮荒浜 付近 0.9m <u>直理町隈崎</u> 付近
最大となる場 気仙沼市唐桑町唯越 南三陸町歌津馬場 作 石巻市雄勝町雄勝 作 女川町塚浜 付近	気仙沼市唐桑町唯 南三陸町歌津馬場 石巻市雄勝町雄勝 女川町塚浜 付近	南三陸町歌津馬場 石巻市雄勝町雄勝 女川町塚浜 付近	石巻市雄勝町雄勝 女川町塚浜 付近			東松島市宮戸鹿嶌	松島町松島桜岡入	利府町赤沼浜田 付近	塩竈市新浜町 付近	七ヶ浜町韮山 付込	多賀城市栄 付近	仙台市宮城野区港	名取市下增田 付込	岩沼市藤曽根 付込	亘理町荒浜 付近	山元町中浜 付近
海波の 高さ 7.7m 7.4m 6.3m 4.8m 3.2m	7.7m 7.4m 6.3m 4.8m 3.2m	7.4m 6.3m 4.8m 3.2m	6.3m 4.8m 3.2m	4.8m 3.2m	3.2m		1.8m	2.0m	1.7m	2.9m	2.1m	2.7m	1.9 m	1.9m	1.4m	2.2m
最大となる地点 気仙沼市本吉町道外 付近 南三陸町戸倉長須賀 付近 石巻市雄勝町雄勝上雄勝 付近 女川町海岸通り 付近 東松島市宮戸観音山 付近							松島町松島大沢平 付近	利府町赤沼櫃ケ沢 付近	塩竈市新浜町 付近	七ヶ浜町菖蒲田浜長砂 付近	多賀城市栄 付近	仙台市若林区井土須賀 付近	名取市下增田屋敷 付近	岩沼市早股前川 付近	亘理町吉田砂浜 付近	山元町坂元浜 付近
神波の 自な 22.2m 21.2m 19.6m 20.7 m 10.6m 4.7m								5.0m	4.8m	10.0m	8.6m	10.3m	10.7m	11.3m	11.5m	14.9m
市町名 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	気仙沼市 南三陸町 石巻市 女川町 東松島市	南三陸町 石巻市 女川町 東松島市	石巻市 女川町 〔松島市	女川町 東松島市	東松島市		松島町	利府町	塩竈市	七ヶ浜町	多賀城市	仙台市	名取市	岩沼市	亘理町	山元町

代表地点(海岸線から 250~500m 程度沖合)の津波の水位影響開始時間 表 19

	长※3	律被 水位 (T.P.m)	1.4m	1.0m	1.1m	1.0m	1.2m	1.3m	1.2m	1.2m	1.2m	1.0m	1.0m	0.9m	0.9m	0.9m	0.9m
内地震	最大波※3	到時間	95分	289分	165分	198分	193分	192分	193分	201分	185分	176分	176分	38分	38分	39分	160分
スラブ内地震	第1波 (+1m) 到達時間 ※2		-	-	-	-	-	-		-	-	-	-	-	-	-	-
	489 / 11	專用 器 ※ 1 3 1	606	₹9 81	48分	-	₹ \$\$	₹\$\$\$	55分	82分	长28	长09	₹8 9	64分	499	长59	长09
	最大波※3	津波 水位 (T.P.m)	7.1m	m0.9	0.6m	3.9m	2.5m	1.4m	1.3m	1.9m	2.5m	2.0m	2.6m	1.6m	1.5m	1.3m	1.9m
(連動型)	最大	到時時間	53分	35分	43分	43分	62分	84分	84分	68分	长89	71分	199分	71分	73分	116分	116分
宮城県沖地震	400 0 000	第1後 (+1m) 到達時間 ※2	30分	32分	长82	₹57£	长19	-	-	€/19	€/19	₹0 L	71分	-	-	-	115分
ŲIII	489.711	寒眠毒 ※問記 ※1	24分	<i>₩2</i>	长02	24分	48分	长I L	71分	£\$€\$	长49	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	₹\$\$	57分	58分	长85	58分
	最大波※3	津波 水位 (T.P.m)	21.7m	20.8m	18.7m	20.2m	10.0m	3.7m	3.4m	9.3m	m4.6	m8.7	10.3m	10.5m	11.2m	11.0m	11.7m
東北地方太平洋沖地震 最大クラスの津波漫水想定	十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	到 時 間 報	41分	长94	长09	长94	长79	124分	125分	4999	499	长69	以 69	(489	489	<i>\(\xi_1 \)</i>	64分
東北地方太平 最大クラスの津	400 0 2007	第1後 (+1m) 到達時間 ※2	21分	分82	公1分	长52	长13	₹£L	74分	₹9 9	<i>14</i>	长09	1465	长09	长09	长09	58分
	489.711	等 器 ※ 記 ※ 1	5分	长4	长4	长9	长01	32分	26分	长61		491	13分	14分	15分	15分	15分
	i	一 一 一 一	気仙沼市	南三陸町	石巻市	女川町	東松島市	松島町	利府町	塩竈市	七ヶ浜町	多賀城市	仙台市	名取市	岩沼市	巨理町	山元町

※1:影響開始時間:代表地点において地震発生から初期水位±20cmの変化が生じるまでの時間。各市町における複数の代表地点のうち最速の

ものを記載。

※2: 第一波(T.P.+1mではない)となるまでの時間。各市町における複数の代表地(到達時間: 4元町におけるまでの時間。各市町における複数の代表地点のうち最速のものを記載。
 ※3: 最大波: 代表地点において地震発生から津波の最大到達高さが生じるまでの時間及びその津波水位。(最大となる地点が複数ある場合は到達時間の早い方を記載)

(案)

8. 中間報告における留意点

1 2

- 3 今回計算した 4 つの地震は、今後被害想定を行い防災対策立案の基礎とするために選定
- 4 した「県内の代表的な地震」であり、各地点における想定最大震度等を示しているものでは
- 5 ない。4つの地震以外にも大きな被害をもたらす地震動・津波が発生しうることに注意が必
- 6 要であり、決して安心材料にしてはならない。今回の結果を自分ごととして冷静に受け止め、
- 7 悲観することなく防災力向上に活用していただきたい。

8

- 9 地震・津波は自然現象であり不確実性を伴うものであること等から、今回推計した結果は
- 10 ある程度幅を持っているものである。そのため、実現象は今回の推計結果を超える可能性が
- 11 ある。また、本計算では県内を 250m 四方の区画 (メッシュ) に分割し、各メッシュはその
- 12 メッシュ内の代表的な値で一様と仮定している。そのため、実際はごく近い場所でも地盤の
- 13 違いなどで震度等が異なることがある。

14

- 15 以上のことから、各地点・施設の詳細な耐震性、液状化危険度等を確認する場合、個別の
- 16 調査・検討などが必要となることがある。

17

- 18 現在の最新の科学的知見に基づく地震の選定・計算であり、今後の新たな知見が得られた
- 19 際には本調査の見直しを検討する必要がある。

20

21

できるところから防災力向上を

住民の方 家具等転倒・落下防止、備蓄・非常持出品、

災害発生時の連絡・避難方法の確認

企業の方 オフィス用品の転倒・移動防止,

防災マニュアルや BCP の実効性の確認

防災関係機関の方 災害時に拠点となる建物等の築年次・耐震化実施状況の

確認

※旧耐震基準(1981年(昭和56年)以前)で建築した建物は特に注意が必要。

など

(案)

1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25	宮城県第3	五次地震被害想定調査中間報告書
26		
27	発 行 年 月	令和 年 月
28	企画・発行	宮城県復興・危機管理部防災推進課
29	指導・助言	宮城県防災会議地震対策等専門部会
30		
31		
32		
33		