

2023年1月20日 東北特殊鋼株式会社 高機能材料事業部 開発技術部 材料開発チーム 浦川 潔

- 1. 会社紹介
- 2. 製品紹介
- 3. 事前調査
- 4. 放射光を利用した測定
- 5. 成果
- 6. 放射光を利用した所感(有用性、難しさ、課題)
- 7. 謝辞

1-1. 会社概要

商号 東北特殊鋼株式会社
 設立年月日 昭和12年(1937年)4月20日
 代表者 代表取締役社長 成瀬 真司
 資本金 8億2,750万円
 従業員数 単体:390名、連結:584名
 本社 宮城県柴田郡村田町大字村田字西ケ丘23
 工場 本社(村田)、土浦、タイ、インド
 営業所 東京、名古屋、仙台

2-1. 本件で調査したFe-Co-V合金

- •高飽和磁束密度 軟磁性材料
 - ・純鉄の約1.3倍の磁束密度があり、製品の小型化、高磁力化
 や高性能化が図れる。
- •用途例
 - 電子顕微鏡用部品、高磁場電磁石、
 ハイパワーモータ用固定鉄芯、小型発電機用鉄芯、
 最高級スピーカー用バックヨーク
- •製造
 - 丸棒 直径3~180mm
 - 板材 板厚 0.1mm~ 幅 ~180mm

鋼種名	主成分	磁気特性					機械的性質(参考値)				
		磁束密度		透磁率	保磁力	比抵抗 (µ·Q·m)	硬さ (HV)	引張強度	伸び	絞り	形状
		B10(T)	B25(T)	(µm)	(A/cm)	10 - 10	1999.01	(N/mm ²)	(%)	(%)	
SUYB1	Fe	1.58	1.65	7,500	0.79	0.12	110	310	55	84	棒
K-MP11	Fe-49Co-V	2.12	2.20	8,000	0.70	0.30	350	356	3	-	棒·板
K-MP41	Fe-35Co	1.60	2.03	2,900	1.02	0.17	203	509	5	4	棒
K-MP39	Fe-20Co-V	1.59	1.75	3,600	1.40	0.39	149	447	45	88	棒

表1. 高磁束密度材料

図2-1. 打ち抜き加工例

- •次世代EV、ドローン用モータの積層コア
- •課題
 - •エネルギーロス(渦電流損)の低減
 - 渦電流:モータを回転させるための磁場変化で 磁性材料内に発生した渦状の誘導電流
 - 渦電流損は、薄板積層化、表面酸化による層間絶縁 で低減

図2-2. ドローン

絶縁性のあるAIの酸化膜を形成したFeCo-V合金を製造し、 AI酸化膜の組成を評価

・・・X線光電子分光(XPS)で分析

- •分析方法
 - ArイオンスパッタでAI酸化膜を削った試料を宮城県産技セン ター殿のXPSで測定
- •結果
 - ・表面のAI酸化膜はAl₂O₃であり、金属(Fe,Co,V)も酸化。

4-1. 放射光利用

- XPSラボ機の結果(AI酸化膜/合金基板界面付近のFe, Co, Vの酸化)を検証したい。
- •輝度が高い(=透過力が強い)放射光を利用して、非 破壊でAI酸化膜/合金界面付近の酸化状態を分析

<u>あいちトライアルユースへ応募</u>

あいちSRスタッフ様との事前打合せで、
 BL6N1でのXPS測定、BL1N2でのXAFS測定が良いとの助言を頂いた。

4-2. XAFS

- XAFS: X-ray Absorption Fine Structure (X線吸収微細構造)
- •X線エネルギーの吸収度から、元素の電子状態や

隣接原子の状態などの情報を得る分析手法

•今回はXANES領域のX線エネルギーから酸化状態を分析

XANES: X-ray Absorption Near Edge Structure (X線吸収端構造)

- ・・・元素の電子状態(価数、化学種)が分かる
- EXAFS: Extended X-ray Absorption Fine Structure (X線広域微細構造)
 - ・・・元素周りの局所構造(配位原子数、原子間距離等)が分かる

4-3. 放射光利用

あいちシンクロトロン光センター

• XPS

- ・光エネルギーが高い(透過力が強い)
 <u>BL6N1</u>で測定
- XAFS
 - AI、Oが測定可能な<u>BL1N2</u>で測定

表4-1. あいちシンクロトロン光センターのビームライン (XAFS, XPS)

	ビームライン	名称	測定手法	光エネルギー	XAFS測定可能元素
\Rightarrow	<u>BL1N2</u>	軟X線XAFS・光電子分光 Ⅱ	<mark>軟X線XAFS</mark> , 超軟X線XAFS 光電子分光	0.15~2.0 keV (8.3~0.6 nm)	K吸収端: <mark>B~S</mark> i L吸収端:S~Kr
	BL5S1	硬X線XAFS I	硬X線XAFS 蛍光X線	5∼22 keV (0.25∼0.056 nm)	K吸収端:Ti~Mo L吸収端:Cs~Bi
$\left \right\rangle$	<u>BL6N1</u>	軟X線XAFS・光電子分光 I	軟X線XAFS <mark>光電子分光</mark>	<mark>1.75∼6 keV</mark> (0.7∼0.2 nm)	K吸収端:Si~Cr L吸収端:Rb~Pr
	BL11S2	硬X線XAFS II	硬X線XAFS 蛍光X線	5~26 keV (0.25~0.05 nm)	K吸収端:Ti~Cd L吸収端:Cs~Bi

4-4. 測定試料の準備

• XPS (BL6N1)

- 測定試料 10mm×10mm×厚さ4mm
- 分析深さが10nm前後のため、
 Arイオンで広範囲にAI酸化膜を5~10nmにスパッタリング

図4-1. AI酸化膜の調整

図4-2. 調整後の試料

- XAFS (BL1N2)
 - ・測定試料 8mm×8mm×厚さ2mm
 - •AI酸化膜 有・無 試料を測定

5-1. あいちSR XPS測定結果

分析施設:あいちSR BL6N1

測定試料:FeCo-V-Al 酸化膜をArエッチンク

0.25%Al 5nm狙い

0.25%Al 10nm狙い

0.5%Al 5nm狙い

0.75%Al 5nm狙い

設備	X線エネルギー	分析深さ
放射光	3,000 eV	\sim 10 nm
ラボ機(Al Kα)	1,487 eV	$2\sim$ 3 nm

5-2. XPS測定

- 測定
 - Survey測定 全範囲(0~1800 eV)を短時間で測定
 - Narrow測定 測定したい元素に対応したエネルギーで測定

図5-1. XPS Survey測定

200

0

Al

5-3. XPS Co, Fe, V

- Fe, Co, Vは、ピークが小さく、
 酸化状態が判別し難い。
- •Vは、VOが有る様に見える。

5-4. XPS Al, O

•Alは、1s軌道、2p軌道のスペ クトル測定でAl₂O₃を確認

5-5. XPS測定結果 まとめ

- •Fe, Co, Vは、ピークが小さいため、酸化状 態が判別し難い。
- •VはVOに酸化していると思われる。
 → XAFS測定結果と合せて、考察
- •AIは、 AI_2O_3 のみ観察された。

図5-8. 放射光XPSでの分析結果

5-6. あいちSR XAFS測定結果

分析施設:あいちSR BL1N2

測定試料:FeCo-V-Al 酸化処理 有・無

0.25%Al 0.25%Al 酸化処理 有り 酸化処理 無

分析深さ	Al K-edge	Fe L-edge, Co L-edge O K-edge, V L-edge		
全電子収量法(TEY)	200~300 nm	10 nm		
蛍光収量法(PFY)	2~3 μm	100 nm		
XPSラボ機	2~3 nm			

5-7. XAFS AI K吸収端

 酸化処理により、AIがAl₂O₃に酸 化していることを確認。

表5-2. AI K吸収端測定結果

収量法	試料	結果		
TEY	酸化なし	チャージアップで 判別不可		
	酸化	AI_2O_3		
DEV	酸化なし	AI, AI ₂ O ₃		
	酸化	Al ₂ O ₃		

5-8. XAFS OK吸収端

- 酸化有無に依らず、VO, Al₂O₃が観察された。
- 酸化処理により、Al₂O₃のピークが 大きくなり、VOのピークは小さく なっている。
- 酸化処理後のV²⁺のピークはPFYの 方が大きい(=表層から深い位置 の方が多く存在)

収量法	試料	結果	
TEV	酸化なし	VO, Al ₂ O ₃	
	酸化	Al ₂ O ₃	
DEV	酸化なし	VO, Al ₂ O ₃	
	酸化	Al ₂ O ₃	

5-9. XAFS測定結果 まとめ

- AIK吸収端では、酸化に伴い金属AIのピークが減少し、 Al₂O₃のみになっている。
- O K吸収端では、酸化有無に依らず、VO, Al₂O₃が観察された。
- •酸化処理により、 Al_2O_3 のピークが大きくなり、VOの ピークは小さくなっている。
- •酸化処理後のV²+のピークはPFYの方が大きい

(=表層から深い位置の方が多く存在)

•Fe,Coはメタルのみ観察された。

図5-13. XAFSの分析結果

- 放射光での分析により、非破壊で金属内部の情報が得られた。
- 酸化膜/合金界面近傍では、<u>AI,Vは酸化物</u>で存在し、<u>Fe,Coは金属</u>状態で存在していることが分かった。

•得られた結果を今後のFeCo-V合金の開発に活かしていきたい。

6. 放射光を利用した所感

- ・放射光やXPS、XAFSの分析手法の知見が得られ ました。
- 放射光利用のために必要な健康診断や利用手順 も理解することが出来、今後の利用が容易に感 じました。
- •XAFS測定では、目的外の元素の吸収スペクトル も検出され、解析に苦労したため、試料調整の 大事さを感じました。

今回の放射光実地研修の参加にあたり、ご協力いただいた方々へ深 く御礼申し上げます。

- あいちシンクロトロン光センター
 シンクロトロン光産業利用アドバイザー
 ビームライン課 BL1N2
 ビームライン課 BL6N1
 ビームライン課 BL6N1
- 名古屋大学シンクロトロン光研究センター
 シンクロトロン光利用研究部門 陰地 宏様
- ・宮城県産業技術総合センター
 材料開発・分析技術部
 伊藤 桂介 様、曽根 宏 様
- 宮城県経済商工観光部
 新産業振興課
 小野寺 幸様
- 東北大学

マイクロシステム融合研究開発センター 教授 鈴木 茂 様

ご清聴ありがとうございました

当社マスコットキャラクター 「キリンのハガネくん」

